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SECTION 1 

INTRODUCTION 

1.1    Background 

This section presents a review of results from previous theoretical, experimental, and 

computational studies of incompressible plane wakes. A brief review of numerical 

simulations of free shear flows is also presented. 

1.1.1    The Incompressible Wake 

Significant progress has been made in understanding the primary stages of transition 

in incompressible wakes behind slender bodies. There exists substantial theoretical, 

experimental, and computational work describing the initial development of the 

wake instability: the growth of two-dimensional Kelvin-Helmholz waves into the 

well known Karmän vortex street. 

Sato & Kuriki [39] performed a now classic set of experiments on both natural 

and forced wakes behind a thin flat plate. They identified three distinct develop- 

mental regions in the wake: the linear region (also known as the Kelvin-Helmholz 

instability region), where small amplitude disturbances grow exponentially; the non- 

linear growth region, where the fundamental two-dimensional mode saturates and 

the wake rolls up into the Kärman vortex street; and the three-dimensional region, 

where strong three-dimensional motions appear. They found that growth rates and 

mode shapes of the disturbances in the linear region were well predicted by linear 

stability analysis of a Gaussian mean base flow. Past the short linear region, how- 



ever, they observed that the evolution of the wake deviates substantially from the 

predictions of linear theory. The amplitude of the two-dimensional fundamental dis- 

turbance saturated, and then decreased, higher harmonics of the two-dimensional 

fundamental appeared in the wake, and the mean velocity and wake width changed 

at a rate which was far more rapid than could be accounted for by linear theory. 

Ko, Kubota, k Lees [22] performed a two-dimensional finite amplitude, single 

frequency disturbance analysis of the plane wake to explain the results reported 

by Sato k Kuriki for the nonlinear region. By applying an integral method to a 

boundary layer approximation of the Navier-Stokes equations, they were able to 

study the energy balance between the mean flow and the finite amplitude distur- 

bances. They related the observed behavior of the wake disturbance amplitude and 

the rapid variations in the mean flow to energy transfer between the disturbance 

and the mean flow via the Reynolds stresses. Their analysis also emphasized the 

importance of binary interactions between disturbance modes, which are the source 

of higher harmonics in the wake. 

These studies, plus others such as those by Sato k Saito [40], who extended the 

work of Sato k Kuriki [39] by examining the effect of multiple frequency forcing, and 

Mattingly k Criminale [26], who developed a disturbance theory which included the 

effects of the nonparallel nature of the near-field wake, give a fairly comprehensive 

picture of the early stages of slender body wake instability. Understanding the two- 

dimensional near wakes behind bluff bodies is much more difficult since the initial 

instability is dominated by a complex mixture of large amplitude motions including 

flow separation dynamics, rollup of the shed shear layers, and reversed flow in the 

near wake (c.f. the studies of Karniadakis k Triantafyllou [20, 21]). It is reasonable 

to assume, however, that far downstream, away from the vicinity of the body, the 

dynamics of the fully developed blunt body wake should be similar to those for the 

wakes of slender bodies.   Any differences should be attributable to differences in 



the disturbance modes which develop in the near wake (effectivly differences in the 

initial conditions the far wake sees). 

In contrast to the fairly complete understanding of the initial stability char- 

acteristics and early development of the plane wake, there still remain significant 

unresolved issues related to the stability characteristics of the two-dimensional non- 

linear wake. It is these secondary stages of instability that lead to the appearance 

of strong three-dimensional motions in the wake. 

Early experiments on the three-dimensional structure of the far wake were per- 

formed by Townsend [45]. These experiments were later extended by Grant [17], 

who took long-time-averaged velocity correlations in the far wake of a cylinder. 

Coherent three-dimensional structures, later referred to as "double-roller eddies" 

by Townsend [46], were inferred from these measurements. These structures were 

described as pairs of curved, counter-rotating vortices oriented perpendicular to the 

plane of the wake. Roshko [37] suggested that the time-averaged data was actually 

due to a superposition of vortex loops, formed by the distortion of spanwise vortices 

from opposite sides of the wake. Mumford [29] later used a pattern recognition tech- 

nique to study the double-roller eddies, and concluded that they were often confined 

to one side of the wake or the other, and that they tended to appear in groups. 

A set of experiments by Cimbala, Nagib, k Roshko [13] were among the first 

in which the existence of spanwise periodic streamwise structures in the planar far 

wake of a bluff body was documented. They postulated that the structures were 

hairpin vortices produced by an interaction between the two-dimensional and oblique 

subharmonic disturbances. They regarded this secondary instability as similar to one 

studied by Pierrehumbert & Widnall [32] in plane mixing layers. 

Flemming [16] performed an analysis of the secondary instability of the plane 

wake. Taking as a base flow a Gaussian mean velocity field with a two-dimensional 

fundamental Orr-Sommerfeld mode superimposed, Flemming obtained a Hill-type 



system of equations for the stability of the far wake. Numerical studies of the sta- 

bility equations indicated that, for sufficiently high fundamental (Orr-Sommerfeld) 

mode amplitudes, pairs of oblique waves at the subharmonic streamwise wavelength 

were unstable. The angle of the most unstable disturbance was found to depend on 

the wake Reynolds number, but unstable disturbances were found to exist at angles 

of between 45° and 70° with respect to the spanwise direction. 

Corke, Krull, k Ghassemi [14], using the results of Flemming, performed a study 

of the mechanisms for the secondary growth of three dimensional modes in the far 

wake of an airfoil. They focused on a parametric resonance mechanism between the 

fundamental two dimensional Karman instability mode and pairs of phase locked 

oblique disturbances at the subharmonic wavelength that were oriented 60° and 73° 

with respect to the spanwise direction. These resonances were expected from the 

form of the stability equations developed by Flemming. They found that, at least 

under certain conditions, a resonance develops where the two dimensional funda- 

mental mode and the subharmonic oblique modes exchange energy over several long 

period cycles. 

Williamson [52] and Williamson & Prasad [53, 54, 55] suggest an alternate mech- 

anism for the development of strong three-dimensional motions. Their recent exper- 

iments indicate that the oblique waves observed in the far wake of a cylinder by 

Cimbala et al. are actually due to an interaction between oblique shedding waves 

produced by the wake generator and two-dimensional subharmonic waves which arise 

from the inherent hydrodynamic instability of the mean flow in the far wake. 

These differing theories on the source of three-dimensional motions — one which 

ascribes the three-dimensional motions in the far wake to the growth of pairs of highly 

oblique subharmonic waves which exist from early in the flow, and one which ascribes 

the three-dimensional motions in the far wake as being composed of oblique waves 

generated from an interaction between asymmetric fundamental vortex shedding 



and long wavelength two-dimensional motions — reinforce the need to examine the 

effect of initial conditions on the development of the wake. Both theories suggest the 

importance of studying the dynamics of highly oblique disturbances in plane wakes. 

Wygnanski, Champagne, & Marasli [58] conducted an experimental study of 

small deficit turbulent wakes created using a variety of wake generators. The gen- 

erators were carefully chosen to have the same drag, and therefore to create wakes 

with the same momentum thickness and momentum thickness Reynolds number. 

They found that the normalized characteristic velocity and length scales as well as 

the normalized longitudinal turbulence intensity depended on the generator used, 

and hence depended on the initial conditions created by that generator. The shape 

of the mean velocity profile, however, was found to be independent of initial con- 

ditions. They attributed the lack of universality in part to the interaction between 

the sinuous (cross-stream component of velocity antisymmetric about the wake cen- 

terline) and varicose (cross-stream component of velocity symmetric about the wake 

centerline) instability modes in the far wake. A common interpretation of classical 

similarity theory, which characterizes the turbulent wake through a single parameter 

— the momentum deficit (see appendix A) — holds that the turbulent wake should 

have a universal growth rate, independent of initial conditions. In fact, classical 

theory addresses only the late time growth laws for the turbulent wake, not the 

actual rates. The implication of the results of Wygnanski et al. is that the rate 

of development of the turbulent far field of the plane wake is indeed dependent on 

parameters related to the initial conditions, and therefore not universal. 

In addition to the primarily experimental and theoretical studies discussed above, 

there have been a large number of computational studies of free shear flows. 

Mixing layer simulations by Riley, Mourad, Moser k Rogers [33] indicate that 

the large scale structures that develop in an incompressible mixing layer are strongly 

dependent on the phase angle between a two-dimensional fundamental disturbance 



and a pair of oblique disturbances. They found that the existence of strong vorticity 

in the region between spanwise rollers at late times required the presence of stream- 

wise vorticity in the same region from early on in the development of the layer. They 

determined that the intense streamwise vorticity was produced by stretching of the 

early vorticity by the strain field induced by the large structures. 

Moser k Rogers [27] and Rogers k Moser [35, 36] conducted a comprehensive 

numerical study of a temporally evolving incompressible plane mixing layer started 

from "clean" initial conditions (the initial conditions consisted of a mean flow plus 

a small number of low wavenumber disturbances). They found that most of the sets 

of initial conditions they studied led to the development of very intense streamwise 

vortical structures. Those mixing layers that did not develop these strong stream- 

wise structures during the initial period of growth took much longer to develop any 

significant three-dimensionality. Because of this they concluded that the develop- 

ment of the strong streamwise structures were a key step in the development of 

three-dimensionality and the eventual transition to turbulence. 

Chen, Cantwell, k Mansour [9, 10] carried out a direct numerical simulation 

of a temporally evolving compressible plane wake. They found that linear theory 

accurately predicted the early growth of the plane wake for freestream Mach numbers 

between M = 0.01 and M = 3.0. They also found that the development of three- 

dimensionality in the compressible wake was significantly affected by the relative 

phase of the initial disturbance. 

Maekawa, Mansour, k Buell [24] performed direct numerical simulations of a 

set of two-dimensional spatially evolving incompressible plane wakes. They found 

that wakes initiated with a two-dimensional fundamental and a two-dimensional 

subharmonic disturbance initially form a Karmän vortex street at the fundamental 

wavelength. Once the fundamental has saturated, the subharmonic disturbance 

begins to become significant and the vortices in the vortex street combine, forming 



pairs of both like and opposite signed vortices. A wake forced with a combination 

of a fundamental and random noise showed similar behavior. 

Moser & Rogers [28] performed a direct numerical simulation of a pair of tempo- 

rally evolving incompressible plane wakes started from pairs of temporally evolving 

turbulent boundary layers which had been previously computed by Spalart [43]. The 

first wake was initiated with only the computed boundary layers. The second was 

initiated with modified boundary layers which had all the two-dimensional modes 

increased by a factor of 20 in an attempt to simulate the receptivity of the plane 

wake to two-dimensional disturbances which normally would occur at the wake gen- 

erator. The high amplification of the two-dimensional modes, which amounted to 

a 13 fold increase in total disturbance energy, was found to be necessary to spur 

the development of the large scale two-dimensional structures that were expected to 

appear. 

The first turbulent wake case computed by Moser & Rogers showed eventual self- 

similar (t1/2) growth and energy spectra with a short region of k~5/3 slope. However, 

the late time growth rate was found to be well below the range of rates measured 

by Wygnanski et al. [58]. The second wake, with the enhanced two-dimension- 

al disturbance field, also showed a region of ÄT5/3 spectra, but never developed the 

expected self-similar W2 growth pattern for any extended period of time. The forced 

wake also had a growth rate well above the Wygnanski range. 

1.1.2    Topology of Fine Scale Motions 

One of the major unsolved problems of fluid mechanics is how to model turbulent 

flows. Model development has been hindered by the fact that different types of flows 

require different models since the large scale features of the turbulence are highly 

flow dependent. An attempt to get around this problem is the technique of large 

eddy simulation, which splits the flow into the mean flow and large scale turbulence, 



which is simulated numerically, and the fine scale turbulence, which is modeled. The 

basic premise of the technique is that the fine scale turbulence has features which are 

flow independent and therefore more amenable to modeling than the larger scales. 

The typical approach to developing a model for the fine scale turbulence is to 

assume statistical isotropy of the turbulent motions at high wavenumbers — there- 

fore relying on the assumption that the spectral characteristics of the turbulence are 

universal. A number of recent studies of the topology of the fine scale velocity fields 

of a variety of turbulent flows have revealed another potential path to developing a 

turbulence model for use in large eddy simulations. They have found what appear to 

be universal features in the geometric properties of fine scale turbulence in physical 

space. The existence of such universal features could potentially lead to models for 

fine scale turbulence based on the physical (local) rather than the spectral (global) 

properties of the turbulence. 

Ashurst, Kerstein, Kerr k Gibson [2] studied direct numerical simulations 

of incompressible forced isotropic turbulence and homogeneous sheared turbu- 

lence. They found that the intermediate principal strain-rate tended to be positive 

throughout the flow. Furthermore, data conditioned on high levels of local dissipa- 

tion of kinetic energy had a uniformly positive intermediate strain-rate, with strain 

rates in the ratio of approximately 3:1: —4. They also found that the highly 

dissipating motions tended to have the vorticity vector aligned with the intermediate 

principal strain-rate direction. 

More recent studies of incompressible forced isotropic turbulence by Vincent k 

Meneguzzi [50, 51] and Ruetsch k Maxey [38] indicate that the small scale structures 

take the form of vortex tubes. The highest rates-of-strain, and therefore highest 

rates of dissipation, were found to occur in the vicinity of, but outside the cores 

of, these vortex tubes. Vincent k Meneguzzi again found that the vorticity in 

these high dissipation regions was aligned with the intermediate principal strain- 
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rate.   Furthermore they found that this result held before the vortex tubes had 

developed. 

Chen et al. [11] studied a set of direct numerical simulations of transitional com- 

pressible and incompressible mixing layers. They used a new data display method 

based on the classification of local flow topologies using the techniques outlined by 

Chong, Perry k Cantwell [12] (see appendix D). The method allows for simple and 

straightforward study of global trends in the topology of the fine scales and cor- 

relations between physical and topological features. As in the other studies, they 

found that the intermediate principal rate-of-strain tended to be positive, and that 

the trend became stronger as the data was conditioned on higher rate of dissipa- 

tion. They also found that regions of high dissipation tended to be associated with 

similarly high enstrophy density. Sondergaard et al. [41], Soria, Sondergaard k 

Cantwell [42] and Blackburn, Mansour k Cantwell [3] extended the study of Chen 

et al. to include data from simulations of compressible and incompressible wakes, a 

turbulent incompressible mixing layer, and incompressible channel flow respectively. 

Again the same general topological features were observed. 

Finally, Tsinober, Kit k Dracos [47] performed an experimental study of the 

alignment of strain and vorticity in both grid-generated and boundary layer turbu- 

lence. They observed a tendency for the vorticity vector to align with the inter- 

mediate principal rate-of-strain in agreement with the previous studies of numerical 

simulations. 

Attempts have been made to explain these observations. Jimenez [19] suggested 

a kinematic model for the alignment of the vorticity and strain using the stretched 

Burgers' vortex as an example. Though the model described a vortical flow in which 

the observed alignment occurred, there was no attempt to explain the evolution of 

such structures in a real flow. Cantwell [5] studied a restricted Euler equation, first 

studied by Vieillefosse [48, 49], in which viscous terms and mixed second derivatives 
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of the pressure had been dropped. The resulting closed-form solution for the evolu- 

tion of the velocity gradients reproduced the tendency for the strain-rates to evolve 

to a state with a positive intermediate principal rate-of-strain. Cantwell [6] later 

developed an intermediate asymptotic model for the case where the viscous terms 

and mixed derivatives of the pressure were non-zero. This model helped to explain 

the structure of the invariant pdfs in the mixing layer data examined by Soria et al. 

1.1.3 Goals of This Study 

In light of the studies discussed above, the following questions arise: 

• Is the parametric resonance model proposed by Flemming and Corke et al. for 

the development of three-dimensionality in the far wake an appropriate one? 

If so: 

• How do the initial conditions affect the development of three-dimensionality 

in the incompressible plane wake? 

• How do the initial conditions affect the mean flow and structure of the turbu- 

lence in the far wake? 

• How do the initial conditions affect the growth rate and mean properties of 

the turbulence in the far wake? 

The intent of this study is to begin to address these questions. 

1.1.4 Direct Numerical Simulation of Free Shear Flows 

The basic tool used in this study is direct numerical simulation. The term "direct" 

refers to the fact that there is no attempt to model small scales in the simulation. All 

of the scales in the flow which contain significant amounts of energy are numerically 

resolved and evolve as solutions to the full Navier-Stokes equations. 
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The major shortcoming of numerical simulation is the limitation on resolution. 

A numerical simulation is restricted by the size and speed of the computational 

hardware used. For a given simulation on a given machine, there is a fixed range of 

scales which can be reasonably computed. For the time being at least, this means 

that flows studied by numerical methods in general, and direct numerical methods in 

particular, are either limited to relatively small flow domains or to Reynolds numbers 

that are quite low compared to those obtainable in laboratory experiments. 

The size of the flow domain which can be represented numerically is also limited 

by the computational resources available. This limitation can have an impact on the 

development of the computed flow. While this constraint also appears in laboratory 

experiments (where walls, boundary layers, and limited facility length can affect the 

flow), it is typically less severe in experiments. Because of these facts, care must be 

taken when attempting to generalize the results of numerical studies. 

To maximize the range of computed flow scales, a temporal formulation has 

been used in the simulations performed for this study. A temporal simulation may 

be thought of as approximating the evolution of a representative set of structures in 

the physically realizable spatially evolving flow as they convect downstream. In the 

case of the wake, a temporal formulation approximates the view an observer that was 

convecting downstream with the freestream (or alternately a fixed observer that has 

been passed by the wake generator) would have of the evolution of the flow structures. 

In a temporal formulation, the roles of time and the downstream coordinate direction 

are swapped with respect to the corresponding spatial formulation. Time in the 

temporal formulations becomes the measure of the level of development of the flow, 

in place of downstream distance for the spatial formulation. Variations in the flow 

at different streamwise coordinates at a fixed time in the temporal formulation are 

analogous to variations with time at a fixed point in the spatial formulation. 
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Using a temporal rather than a spatial formulation has the advantage of allowing 

the resolution of smaller scales for a given set of computational resources. A spatial 

formulation requires the resolution of both a large flow domain and the fine scale 

motions. This represents a potentially very wide range of scales, with correspond- 

ingly large computational requirements. Using a temporal formulation allows the 

range of resolved scales to be reduced by restricting the largest resolved scales in the 

flow to at most a few representative large structures instead of the full domain. By 

reducing the computational requirements associated with the large scales, more of 

the available resources may be focused on resolving the small scales. 

One assumption inherent in any temporal formulation is that the streamwise rate 

of change of a spatially evolving flow is small at the scale of the structures being 

studied. When this assumption holds, the mean flow may be approximated as being 

locally parallel without significantly affecting the development of the structures of 

interest. This assumption is generally a very poor one very near the origin in any 

spatially developing free shear flow. It can, however, be quite reasonable away from 

that region if the growth of the far field flow is sufficiently slow. For wakes, in 

which the far downstream flow grows asxä (where x is the downstream distance) 

the assumption of parallel mean flow is quite good. For mixing layers, in which 

the far downstream flow grows like x, the assumption of parallel mean flow is less 

valid. Under the proper conditions, however, the change in width of the mixing layer 

over the length of the structures being studied can be relatively small, making the 

temporal approximation useful. 

Temporal formulations also inherently ignore the details of how disturbances are 

initially created in the flow. Since here we are interested in how specific disturbance 

modes (disturbances with specific wavelengths, angles, and phases) affect the devel- 

opment of the far wake, the exact details of how those specific modes are generated 

in a spatially evolving wake are not addressed.  All of the geometric details of the 
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wake generator are subsumed in the choice of disturbance modes and disturbance 

phases. 

Finally, temporal formulations (and to a lesser extent spatial formulations), by 

limiting the computational domain to a few large structures in the flow, can confine 

the development of the flow in the streamwise and cross-stream directions, possibly 

quite severely. This artificial confinement can inhibit or prohibit the development 

large scale motions which might normally exist, and become dynamically significant, 

in a physical flow. The effects of the finite computational domain must be taken into 

account when interpreting the computational results, particularly in the late stages 

of development of the flow. 

Numerical simulations in general have some special advantages in answering the 

type of questions asked at the end of Section 1.1.1 above. The initial conditions 

can be very precisely controlled and the results present a complete description of 

the entire flow field, including physical variables that would normally be very hard 

to measure. This allows for unambiguous connections to be made between initial 

conditions and developed structures. In addition, direct numerical simulations give 

access to all the physical quantities in the flow at a given instant. This allows study 

of quantities which are not normally available from a laboratory experiment. 

The numerical technique used here to perform the simulations is known as a 

"pseudo-spectral" method. In a "spectral" method, the dependent variables are 

expanded as a sum of (usually orthogonal) basis functions. This allows the governing 

partial differential equations for the physical variables in the problem to be converted 

into a set of ordinary differential equations for the time evolution of the coefficients 

of the basis functions in the approximating sums. The primary benefit of such an 

approach is that, by expressing spatial derivatives of the basis functions in terms 

of the basis functions, calculation of spatial derivatives is greatly simplified. It also 

allows derivatives to be calculated with "spectral" accuracy.  This means that the 
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error in the representation of derivatives goes to zero exponentially as the number of 

functions in the basis set goes to infinity. Other approaches, such as finite difference 

schemes, typically have errors that go to zero algebraically. 

Another benefit of spectral methods is that they lead to algorithms that are 

simple to implement on parallel processing computers (machines that are designed 

to use multiple interconnected microprocessors to work different parts of the same 

problem simultaneously). Larger and more complex simulations can be carried out 

on these parallel machines. 

In what is known as a "fully" spectral method, any nonlinear terms in the gov- 

erning equations are computed using convolution integrals involving the coefficients 

of the expansions. This is a computationally intensive process. A "pseudo"-spectral 

method makes use of fast transforms to convert between the physical representa- 

tion of the dependent variables and the basis function expansions. This allows any 

nonlinear terms to be calculated in physical space using simple multiplication then 

re-expanded in terms of the basis functions. For large problems, the use of fast 

Fourier transforms makes pseudo-spectral methods significantly more efficient than 

fully spectral methods. 

1.2    Outline of Present Work 

The intent of the present work is to examine the effect of the choice of initial con- 

ditions on the development of the incompressible plane wake. Of particular interest 

is how the initial conditions relate to the development of three-dimensionality and 

eventual transition to turbulence in the wake. Also of interest is whether the struc- 

ture of the turbulence which develops is independent of initial conditions as predicted 

by the usual one parameter similarity analysis of the far wake. 
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All of the flows that will be described here were started from a laminar base 

flow upon which was superimposed a small number of disturbance modes at very 

specific wavelengths. The disturbance modes were the most unstable eigenfunctions 

as predicted by linear stability theory. Understanding these very simple, "clean," 

wake flows should allow for a better understanding of wakes started with more 

realistic initial conditions, which will contain uncontrolled disturbances. 

Section 2 describes the numerical methodology used to perform the direct numer- 

ical simulations used in this study. A new pseudo-spectral algorithm for simulating 

planar shear flows with periodic freestream boundary conditions is described and 

tested. The method uses Fourier transforms in all three spatial directions to solve 

for the flow in a finite, time-varying, computational domain using velocities which 

are matched at the domain boundaries to known analytic solutions. 

Section 3 presents results from a series of two-dimensional direct numerical simu- 

lations. The effect of the choice and phasing of two-dimensional disturbance modes is 

described. The effect of flow Reynolds number on the development is also examined. 

Section 4 presents results from a wide series of three-dimensional direct numerical 

simulations of the plane incompressible wake. The effects of disturbance mode, 

relative disturbance phasing, and flow Reynolds number on the wake development 

are discussed. 

Section 5 examines the evolution of the topology of the small scale motions for 

a selected subset of the three-dimensional simulations discussed in Section 4. 

Section 6 presents the major conclusions of this work and outlines some recom- 

mendations for future work. 

Appendix A presents a brief outline of classical similarity theory as applied to 

incompressible plane wakes, as well a definitions of some of the turbulence measures 

used. 
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Appendix B presents a review of basic linear stability theory and the method 

used to generate the disturbance eigenfunctions for the computed flows. 

Appendix C presents an overview of numerical aliasing and a description of the 

dealiasing algorithm used. 

Appendix D describes in greater detail the topological methods used in Section 

5 to study the structure of the fine scale motions in the computed flows. 

Appendix E presents a full set of invariant space pdfs for selected wake simula- 

tions. 

Appendix F presents mean turbulence statistics for selected wake simulations. 

Appendix G presents preliminary results from a set of wake simulations initiated 

with combinations of oblique fundamentals at various angles and two-dimensional 

subharmonic disturbances. This approximates the initial conditions in the experi- 

ments of Williamson and Williamson & Prasad. 

Appendix H gives a listing of all the computations performed for this study along 

with the values of the relevant flow parameters for each simulation. 

1.3    Summary of Results 

1.3.1    The Two-dimensional Plane Wake 

Two-dimensional simulations of the temporally evolving plane wake initiated with 

combinations of disturbance eigenfunctions at the fundamental, subharmonic, and 

sub-subharmonic wavelength indicate the following: 

• The presence of a subharmonic disturbance causes the initial Kärmän rollers to 

amalgamate and/or pair, depending on the phase relative to the fundamental. 

The presence of a sub-subharmonic disturbance has minimal effect on the 

structure or growth of the wake. 
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• Increasing the Reynolds number increases the intensity of the large scale struc- 

tures in the flow at a given development time without having a major effect 

on their overall shape. Increasing Reynolds number significantly increases the 

number, intensity, and duration of small scale features. 

• The passive scalar and enstrophy density fields track each other well. Major 

differences between the enstrophy density and scalar fields only appear in 

regions of the flow where there has been significant cancellation of vorticity 

of opposite sign. 

1.3.2    The Three-dimensional Plane Wake 

PHYSICAL SPACE 

Temporal simulations of the three-dimensional plane wake at various Reynolds num- 

bers, initiated with combinations of two-dimensional and three-dimensional distur- 

bance eigenfunctions at the fundamental, subharmonic, and sub-subharmonic wave- 

length at various phases indicate the following: 

• The mechanism proposed by Flemming and Corke et al. is a legitimate route 

for the development of three-dimensional motions in the far wake. 

• Wakes with two-dimensional and oblique disturbances at only the fundamental 

wavelength do not produce any significant three-dimensionality in the far wake. 

The addition of a two-dimensional subharmonic disturbance produces coherent 

three-dimensional structures of only moderate strength. 

• The presence of an oblique disturbance at the subharmonic wavelength results 

in the development of very strong three-dimensional structures, independent 

of the presence or absence of disturbances other than the two-dimensional 

fundamental. 
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• The primary effect of the phase of the oblique disturbances is to determine 

which side of the wake develops the dominant three-dimensional structures. 

The phase of the two-dimensional subharmonic disturbances has a significant 

effect on the development of streamwise structures in the wake only in the 

absence of subharmonic oblique disturbances (when the wake dynamics are 

primarily two-dimensional). 

• As the wake Reynolds number is increased, the strength of the three-dim- 

ensional structures increases. At the highest Reynolds numbers simulated, 

where there is a significant volume of intense vorticity spread through the 

wake, the highest enstrophy density regions appear as coherent three-dimen- 

sional structures. These structures take the form of elongated vortex tubes 

with lengths on the order of the wake width and diameters on the order of the 

turbulent scales. 

• Preliminary studies indicate that the mechanism proposed by Williamson & 

Prasad for the development of three-dimensional motions in the far wake is 

also legitimate so long as the shedding angle of the oblique fundamental is 

sufficiently high. Weakly oblique shedding does not appear to result in the 

strong streamwise structures that are necessary for the development of fine 

scales. 

INVARIANT SPACE 

The simulation results have been used to study the invariants of the velocity gra- 

dient tensor. Topological analysis of the fine scale, high gradient, motions in the 

incompressible wakes revealed the following: 

• The wakes with a three-dimensional subharmonic have both a greater quantity 

of and more intense high gradient motions. 
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• The characteristic shapes of the joint probability density functions for invari- 

ants of the incompressible plane wake are similar to those observed in the other 

three-dimensional flows discussed in Section 1.1.2: 

- Joint pdfs of the second and third invariants of the velocity gradient 

tensor have a characteristic "skewed teardrop" shape, with high gradient 

motions tending to be of topological types stable vortex/stretching and 

unstable node/saddle/saddle. 

- Joint pdfs of the second and third invariants of the rate-of-strain tensor 

indicate that the most dissipative motions are associated exclusively with 

an unstable node/saddle/saddle type strain topology. More moderately 

dissipating motions, which account for the majority of the integrated dis- 

sipation in the flow, are also very strongly associated that strain topology. 

- Joint pdfs of the enstrophy density and vortex stretching indicate that 

highly rotational motions occur in regions where the vortex stretching 

is positive, even at late times when the intensity of all gradients are 

decreasing in the wake. In addition, regions with moderate to high rates of 

dissipation tend to have the vorticity vector aligned with the intermediate 

principal rate-of-strain direction. 

• Increasing the wake Reynolds number increased the intensity of the gradients 

while preserving the shape of the pdfs in invariant space. In effect, the shape 

of the pdfs are Reynolds number invariant. In addition, changes in the phases 

of the initial disturbances have minimal effect on the shape of the invariant 

space pdfs. 
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SECTION 2 

NUMERICAL METHODOLOGY 

2.1    Introduction 

The challenge of calculating free shear flows using spectral methods has been 

approached using a variety of numerical schemes. The problems of interest are 

turbulent flows which are periodic in two directions and have vorticity which is 

"compact" (of finite extent) in the third direction. An early computation of such 

a case was performed by Orszag & Pao [30] who simulated a temporally devel- 

oping momentumless wake using a pseudo-spectral method. They approximated 

the infinite direction in the flow by truncating to a finite domain and using sine 

and cosine transforms in the inhomogeneous direction, effectively imposing free 

slip conditions at the non-periodic boundaries of the finite computational box. A 

similar approach using a three-dimensional vorticity stream function formulation 

was taken by Mansour, Ferziger, & Reynolds [25] to compute a time-developing 

turbulent mixing layer using a large eddy simulation technique. The disadvantage 

of approaches such as these is that they fail to accurately treat the irrotational field 

in the infinite direction by forcing the flow to be parallel some finite distance into 

the freestream regions. 

Cain, Reynolds, & Ferziger [4] analyzed the method of Orszag & Pao [30] and 

found that the size of the domain in the inhomogeneous direction can influence 

the computational results. To circumvent the restriction of a finite size domain, 

they introduced a cotangent mapping in the infinite direction which allowed the 
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use of Fourier spectral methods in the doubly infinite domain. This effectively 

moved the no-stress boundaries out to a very large distance from the rotational 

region, minimizing the error inherent in such an artificial boundary condition. This 

sort of approach has become the mainstay of numerical simulations of flows with 

infinite domains (i.e., Chen, Cantwell k Mansour [10], Laurien k Kleiser [23]). The 

disadvantage of this scheme is that it sacrifices some of the simplicities of using 

the Fourier transform (such as differentiation in physical space being represented by 

simple multiplication by a wave vector in Fourier space), resulting in greater coding 

complexity. Computational resolution is also wasted on regions of the flow which 

are free of vorticity. 

Spalart, Moser, k Rogers [44] approached the problem by using a set of basis 

functions for their expansions that are defined on the semiinfinite interval. They 

used a set of Jacobi polynomials in a mapped variable to represent the vortical 

region, and slowly decaying exponential "extra" functions to accurately represent 

the potential flow far from the vortical region. This combination of quickly decaying 

and slowly decaying basis functions allowed them to achieve good accuracy and 

good (though not spectral) convergence. The drawback is that the use of Jacobi 

polynomials is numerically expensive as each Jacobi transform must be accomplished 

by quadrature. In addition, this approach, as well as the Cain mapping approach, 

tends to concentrate resolution very near the centerline, at the expense of resolution 

a small but finite distance away. This approach is well suited to mixing layers, but is 

inconvenient for flows for which high gradients and small scales develop away from 

the centerline as occurs in the wake. 

The goal of the method described here is to avoid the drawbacks of the previous 

methods. It is based on an algorithm similar to one presented by Corral k Jimenez 

[15]. Fourier transform techniques, for which fast numerical transforms exist, are 

used to solve problems which have one infinite and two periodic directions without 
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Y2(t) 

Yl(t) 

Figure 2.1: Numerical domains 

having to resort to nonlinear mapping of the infinite direction to a finite domain. 

This preserves all of the benefits of using Fourier transforms (differentiation accom- 

plished by multiplication by a wave number, integration accomplished by division 

by a wave number, interpolation accomplished by multiplication by a phase factor, 

resolution changes accomplished by adding or truncating zeros in wave space) while 

still accurately representing the boundary conditions. It also allows for uniform 

resolution of the domain of interest. 

2.2    Approach 

The basic approach is to divide the flow into three domains in the nonperiodic 

direction as shown in Figure 2.1. Domain I extends from —oo to Yi(t), domain II 

from Yi(i) to Y2(t), and domain III from Y2{t) to +oo. The boundaries Y^t) and Y2(t) 
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are chosen such that domain II contains all the vorticity in the flow, and domains I 

and III are vorticity free. This choice of Y\{t) and Y2(t) requires that the vorticity 

magnitude and vorticity gradient at the top and bottom of domain II be zero (or 

in practice very small). This is the case for many flows of interest, particularly at 

moderate to high Reynolds number where the interface between rotational fluid and 

irrotational fluid is sharp. Choosing Yi(t) and Y2(t) in this way allows the vorticity in 

domain II to be treated as fully periodic. The vorticity equations governing the flow 

may then be solved with a pseudo-spectral technique which uses standard complex 

Fourier transforms in all three directions. 

The inherent nonperiodic nature of the flow in the cross stream direction only 

enters into the equations of motion through the nonlinear term of the momentum 

equation, which involve the velocity. The vorticity, Uj, is not directly affected by 

the images of the flow created by artificially introducing periodicity in the non- 

periodic direction. The vorticity is effectively zero at the nonperiodic edges of the 

box and can accurately be expanded using periodic functions. The velocity, Uj, 

which is a solution of a Poisson equation involving the vorticity as a source term, is 

affected by the vorticity images and must be corrected to remove the effect of the 

artificial periodicity. This is accomplished by adding an incompressible, irrotational 

component to the velocity field in domain II which matches it to analytic asymptotic 

solutions for the velocity in domains I and III. 

Note: In the following discussion, all quantities have been normalized by the 

initial flow halfwidth o0 and the freestream velocity UQ as follows: 

-xl _Ü Xj    —      , Uj    —     ,T 
0o UQ 

v° 

b0Uo 
K = 

U0t°             p 

bo               p 

1     p 

' US [P 

K°     _     V 

b0Uo ~~ Pr 
(2.1) 
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X2 

Figure 2.2: Mean flow parameters 

where ()° are the unnormalized quantities. The initial halfwidth, b0 is defined as 

half the width of the initial mean velocity profile at half the maximum mean defect 

velocity (see Figure 2.2). The mean profile is generated by averaging over xi~x3 

planes. 

2.3    Governing Equations 

2.3.1    Vorticity Form of the Navier-Stokes Equations 

The incompressible, uniform density, Navier-Stokes equations are 

uJ,j = ° 

Pj 
Ujtt + UkUj,k + — = VUj,kk 

r 

(2.2) 

(2.3) 
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where Uj is the velocity in the Xj direction, p is the pressure, and p is the (constant) 

density. Here, and throughout the remainder of this dissertation, the Einstein con- 

vention 
N 

ajbj = J2aibJ (2-4) 
3=1 

will be used to simplify the form of the equations. Here TV is the number of physical 

dimensions in the problem. 

Rewriting the nonlinear term in equation 2.3 using the identity 

,   {UkUk),j (cs c\ 
UkUj,k = ZjklUlLOk +  (2.5) 

UJ = ejkiui,k (2.6) 

yields 

«w = 0 (2-7) 

Uj,t + tjkiui^k + (- H r—),j = vuj^k (2.8) 
P        2 

where ujj is the vorticity component in the Xj direction, and tjki is the alternating 

unit tensor 

fl,      if(;,*,Z) = (1,2,3), (3,1,2), or (2,3,1) 

-1,   if (i,fc,0 = (3,2,1), (1,3,2), or (2,1,3) (2.9) 

_ 0,       if j = k, j = /, or k = /. 

tjki = 

Taking the curl of equation 2.8 and using the identity 

tjkihk = 0 (2.10) 
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where <j> is any scalar, yields the vorticity form of the Navier-Stokes equations. 

(2.11) Ujj + €jkieimn(unLüm) ,fe = VLOj^kk 

IJJJ = £jklUi,k- (2.12) 

These equations will be solved along with the set of passive scalar equations 

Cj,t + ukCjtk = KCj,kk (2-13) 

where Cj is a scalar concentration and K is the scalar diffusion coefficient. Since 

equation 2.13 is linear and homogeneous in Cj the magnitude of Cj is arbitrary, 

hence normalization is irrelevant. In addition, because of the form of equation 2.13 

Cj may be offset by any arbitrary constant. This affords wide latitude in the choice 

of initial conditions for the scalar field. 

2.3.2    Stretching Grid 

In order to maximize the available resolution for a given number of grid points while 

at the same time keeping the vorticity at the edges of the resolved box small to satisfy 

the asymptotic matching condition, a growing uniform grid is used in the nonperiodic 

x2 direction. To implement this, the coordinates in each direction are rescaled to an 

interval of length 2x, the "natural" interval for Fast Fourier Transforms. 

6-^      M-W)      6"^ (2'14) 

where L\ and L3 are the fixed box lengths in the periodic X\ and x3 directions 

respectively, and L2(<) = Y2(t) - Yi(t) is the time varying box size in the aperiodic 

x2 direction. For convenience it will be assumed that Y2{t) = —Yi(t). 
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Applying these coordinate transforms to equations 2.11, 2.12, and 2.13 yields 

Uj,t r^^i'2 + ejkl(tlnqUqUn),mh-mk = VbJj^l^-lm^mk (2.15) 
^2 

Uj = ejkiuitmA.mk (2.16) 

Cj,t j—'-Cjt + UkCjtmAmk = KCj,kih-imA.mk (2-17) 

{2*/Lj,    if j=k; 
A,* = . (2-18) 

[ 0, otherwise. 

The second term on the left hand side of equation 2.15 and the similar term on 

the left hand side of equation 2.17 are due to grid stretching. They may be absorbed 

into the nonlinear terms by defining a grid-relative velocity u*j = Uj — L2,t{t)C2^2j/^- 

In terms of this modified velocity the equations of motion become 

Wj,t + ejki(einqU*u}n)tmAmk + ^ujjL2,tlL2 = vu^kiAimKmk (2.19) 

coj = 6jkiu*tTnAmk = ejkiui,mA.mk (2.20) 

Cjj + U*kCj,mAkm = K>Cj,klh-lmh-mk (2.21) 

(2Tr/Lj,    if j=k; 
A,-* = . (2-22) 

{0, otherwise. 

fl,   if j=l,3; /      N 

7 = _ (2.23) 
{0,    otherwise. 

The remaining grid stretching terms in equation 2.19 are in a form that may be 

readily Fourier transformed. 

In domains I and III, the terms in equation 2.19 are identically zero, and the 

left hand side of equation 2.20 goes to zero. Equation 2.20 will be solved to obtain 
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asymptotic solutions for the velocity in domains I and III and total velocity in 

domain II. 

2.4    Numerical Method 

2.4.1    Transformed Equations 

The governing equations 2.19 through 2.21 are solved in domain II using a standard 

Fourier pseudo-spectral technique treating the vorticity as periodic in the aperiodic 

direction £2- Note that all of the terms in equation 2.19 can be treated as periodic 

since by construction UJ -» 0 at the top and bottom of the computational box. The 

same holds true for the scalar convection equation 2.21. The governing equations 

are advanced in wave space with nonlinear terms which are calculated in physical 

space at each timestep. 

Equations 2.19, 2.20, and 2.21 Fourier transformed in all three directions become 

ujit + C^ + vCojkkkiKimKmk) + ikmT{ejki{einqu*qun)kkm) = 0 (2.24) 

Lüj = iejkiü*kmAmk = iejkiüikmAmk (2.25) 

Cj,t + KÖjhkiA^Amk + HCj,kU*mkmk) = 0 (2.26) 

rw^, i/rt (227) 
I 0, otherwise. 

f 1,   if j=l,3; 

0,    otherwise. 
(2.28) 

where kj is the wavenumber in the £,- direction, hatted quantities are Fourier trans- 

forms of the corresponding physical vector, and FQ is the Fourier transform oper- 

ator. 
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The diffusion term in equation 2.26 as well as both the diffusion term and the grid 

stretching term which appear in equation 2.24 are absorbed into the time derivative 

terms by use of integrating factors, yielding the basic set of equations in wavespace. 

G(t) 
(G(t)uj)tt + ikm^ejklieinqUgU^Amk) = 0 

u)j = itjkiü*kmAmk = i£jkiüikmAmk 

H{t) 
(H(t)Cj)t + r(u*kAmkCj,m) = 0 

G(t) = Ll{t) exp(vkikk /  AimAmkdT) 

H(t) = exp(Kklkk   /    AimAmkdT) 

Ajk = 
2TT/LJ,    if j=k; 

0, otherwise. 

7 
1,   if j=l,3; 

0,   otherwise. 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

The solution procedure for this set of equations is as follows. 

• The periodic part of the velocity field is calculated from the periodic vorticity 

in wave space for domain II. 

• The velocity and vorticity fields are transformed into physical space in the 

aperiodic direction. 

• An aperiodic field is added to the periodic velocity field to form the total, 

aperiodic, velocity. 
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• The velocity and vorticity fields are transformed into physical space in the 

remaining two directions and the nonlinear terms are formed. 

• The nonlinear terms, which are periodic by virtue of the vorticity going to zero 

at the edges of the box, are then transformed in all directions back into wave 

space. 

• The nonlinear terms are dealiased. 

• The nonlinear terms are used to advance the vorticity field in time. 

2.4.2    Asymptotic Matching of Velocities 

The crux of the procedure outlined above is the calculation of the aperiodic compo- 

nent of the velocity field. This is calculated from the curl of 2.20 which is 

Uj,klhlmh-mk — —^jkl^Um^mk- (2.36) 

Only one component of Uj need be solved for, since the remaining two components 

can be constructed from continuity and the definition of vorticity. It is convenient 

to solve for the cross-stream velocity u2. The equation for U2 is transformed in the 

two periodic (£1 and £3) directions, but not in the nonperiodic (£2) direction giving 

the second order ordinary differential equation 

~ /   1        3 \ ~ 2^2,22 + (72 + 72)^2 = - J~2 fcfcAjfc/e2/mWm. (2.37) 

For K2 = L\{h\jL\ + k\jL%) > 0, the general solution to equation 2.37 is 

fi2 = fif + iexp(I2(|| + ||)"6) + Bexp(-Z2(fi + -f )^2) (2-38) 
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where üf is the particular solution of equation 2.37 (zero in domains I and III where 

the vorticity is zero, calculated numerically from the vorticity field in domain II), 

and A and B are functions of K which are determined by asymptotic matching of 

the velocity and velocity gradient. 

The solution for the velocity must be bounded at £2 = ±00, hence in the three 

domains 
' AjeK^2 domain I 

Ü2 = < üf + AueKi2 + Bue~Ki2    domain II (2-39) 

, Bine-~Ki2 domain III. 

Matching the velocities and velocity gradients at the domain boundaries £2 = ±TT 

yields four algebraic equations in four unknowns 

Ait —irK fi£(-7r) + Ant-*K + But „■KK (2.40) 

KAit~vK = «f,(-*■) + KAne~*K - KBne 

■KK BHIe-*K = «f (TT) + Ane*K + Bne „-irK 

■xK KBme-rK = ü£2(TT) + KAneT* - KBne -■KK 

(2.41) 

(2.42) 

(2.43) 

Solving for An and Bu gives 

u2 = u2 
~P , IffüZjr*)     ~p 

+ 5« K 
v*{-*))exji-Kh) - ( 

K 
+ u2 (ir))exp(K^2 

P      P 
/^L2(| + |). 

(2.44) 

(2.45) 

Solutions for U\ and uz are constructed from the incompressibility condition and the 

definition of vorticity. 
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If K = 0, equation 2.37 is replaced by the two-direction transform of 2.20 with 

fci = k3 = 0 

üj = ei2Ä,2A22- (2AQ) 

Integrating in the £2 direction yields 

(2.47) -      ~2^2     - .i-n UJ = ——tjim + Dj 
Li 

where Dj are constants which are determined by the mean velocity in each direction. 

Solutions for u\ and ü3 are constructed from the resulting solution for ü2 in 

domain II for each (h, k3) pair and the total solution for the velocity is transformed 

to physical space in the periodic directions. The cross product of the velocity and 

the vorticity is taken to form the periodic nonlinear term. The nonlinear term is 

then transformed back into wave space to advance the vorticity and scalar fields in 

time. 

2.4.3    Time Advance 

The time advancement method used for all dependent variables is the second order 

Runge-Kutta scheme 

*,* = /(*;*) (2-48) 

^+l =$" + At/($n
;r) (2.49) 

$«+i = $" + —(f($n- tn) + /($?+1; tn+1)) (2.50) 

where n is the time index. 

This particular scheme was chosen because it minimizes memory requirements for 

a given simulation size. It requires only two copies of the three vorticities and each 

scalar (one field at t = tn and one at t = t"+1) to be stored at any given time. It also 
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allows for the use of the random-shift dealiasing scheme described in Section 2.4.5 

and Appendix C, which helps make maximum use of the available computational 

power. 

Applying this scheme to the governing equations 2.29 and 2.31 yields 

u n+l G 

+ ik^+1fn+1 ((uqu*relqr)Amkejki) 
(2.51) 

r<n+l _    Hn   nn   i    At (   Hn   Tnf„.* A       n      \ 

(2.52) 

The precise forms of Gn and Hn depend on the way in which the grid is stretched. 

In the present code, grid stretching was taken to be piecewise linear, hence 

(2.53) 

and 
Tin /„2 7.2        1 1 7,2 

(2.54) 

This is the form of the equations implemented. 

2.4.4    Accuracy and Stability 

As implemented, the code has standard Fourier spectral accuracy in all three spatial 

directions and is second order accurate in time. The second order Runge-Kutta 

timestepping scheme used is "weakly" unstable (it is unstable in the absence of 

viscosity, though only mildly so for small At). However in the presence of even a 

small viscosity the method is stable for a range of At. 
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This can be quantified, by applying the method to the one dimensional linear 

convection-diffusion equation 

u,t + cutX = vu<xx (2.55) 

for a single Fourier component 

2irikx 
u = c(<)exp(]vÄ^- 

(2.56) 

Substituting equation 2.56 into equation 2.55 yields 

_        (2irikc      4TT
2
PZ/\ 

=   Lu. (2.57) 

Applying the timestepping algorithm from equations 2.48 through 2.50 to equation 

2.57 gives 
/ r2At2\ 

u"+1= ll + LAt + ^=^)un. (2.58) 

The timestepping method is considered stable if un remains finite as n -> oo. 

This will be true if 
u n+l 

U" 
1 + LAt + 

L2At2 

< 1. 

It is convenient to define the dimensionless variable 

(2.59) 

2-rrkcAt      2irk 
(2.60) 

and the dimensionless parameter 

B = 
2itvk 

cNAx 
(2.61) 
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B 

Figure 2.3: Neutral stability curve for second order Runge-Kutta timestepping algo- 
rithm applied to linear con-vec-tion-diffusion equation utt+cuiX = vu,xx. Coordinates 

where CFL is the Courant-Friedrichs-Lewy number. In terms of these dimensionless 

quantities 

LAt = -{B + i)r (2.62) 

and the stability condition from equation 2.59 expands to 

(B2 + lf 
r3 - B{B2 + l)r2 + 2B2r -2B<0. (2.63) 

The neutral curve for equation 2.63 is shown in Figure 2.3. The equation is third 

order in r (hence third order in At) and no simple analytic stability criterion exists. 

In order to choose a At, therefore, a simple Newton method solver was used to solve 

equation 2.63 numerically for r(B) at each timestep. Note that for a given timestep 

the parameter B is a quantity with known limits (at k = 1 and k = N/2). At each 

timestep r(B) was evaluated twice, once for k = 1 and once for k = N/2. The 

minimum of the two resulting values for At, multiplied by a factor of C = 0.8, was 

used for the next timestep size. 
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The factor C < 1.0 was necessary to ensure time accuracy in addition to stability 

of the method. Several test runs with identical initial conditions (the same as the test 

case discussed in Section 2.8.3) but with C varying from 0.4 to 1.0 were performed. 

The value C = 0.8 was found to be sufficiently small for the solution to converge to 

a solution independent of C. 

2.4.5    Alias Control 

Following the approach of Rogallo [34], aliasing was controlled with a combination 

of high wavenumber masking and phase shifting. All modes with wavenumbers such 

that 

K + K + K > 1 (2.64) 

are set to zero. This eliminates all two- and three-dimensional aliasing, leaving only 

the one-dimensional aliasing term in each direction. The one-dimensional alias errors 

are dealt with by phase shifting the data a random fraction of a grid cell width in 

each direction at every other time substep followed by a further shift of exactly one 

half a grid cell width in each direction at the subsequent time substep. This random 

shifting cancels the aliasing error to second order in time, the same order as the 

time advancement algorithm. Using this dealiasing technique instead of a perfect 

(2/3 rule or multiple phase shift) technique reduces both memory requirements and 

operations per timestep. See Appendix C for a more complete discussion of aliasing 

and dealiasing for Discrete Fourier Transforms. 

2.5    Code Implementation and Data Management 

The code described above has been implemented on an Intel iPSC/860 supercom- 

puter. Also known as the "Hypercube," the iPSC/860 used is a massively parallel 

computer which has 128 computational nodes each consisting of a 40 megahertz 
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Intel i860 processor with 8 megabytes of random access memory (RAM). The code 

is written in VECTORAL, a high level programming language developed by Wray 

[57] which facilitates the handling of large data sets. 

The architecture of the machine dictated the implementation of the code. The 

whole simulation, executable and data, had to fit in the distributed RAM on the 

machine. This requires careful division of the data into useful subsets which reside 

separately on each processing node. The method described is natural to implement 

on a machine with such an architecture since nearly all of the operations at any 

given point in the algorithm are performed independently on separate parts of the 

data set. This leads to a simple division of tasks among the multiple processors, 

making for a fast and efficient code. 

In order to perform a transform on a line of data, a given processor must have 

all the data in the transform direction for that line. To achieve this, the data was 

structured for a two pass method, with each of the N computational nodes storing 

and manipulating 1/iV of the total data set during each pass, and swapping data 

between passes. 

For the first pass, each computational node holds all the £1 and £2 data for l/N 

of the £3 planes. All £2 derivatives and transforms are evaluated during this pass. 

For the second pass, the data is swapped between computational nodes so that each 

node now holds all of the £1 and £3 data for l/N of the £2 planes. All £1 and £3 

derivatives and transforms are evaluated during this second pass. The data is then 

swapped back to its original configuration and the governing equations are advanced 

in time. Table 2.1 lists the operations executed during each time substep. 
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Table 2.1: Code Structure 

Pass 1 

1. Transform nonlinear terms into wave £2 space, shifted mesh. 

2. Unshift nonlinear terms. 

3. Advance governing equations for substep. 

4. Save data and/or stop if necessary. 

5. If first R-K substep, calculate At, dealiasing shifts, integrating factors, etc. for 

timestep. 

6. Zero "oddball" (kj = Nj/2) wavenumber contributions. 

7. Zero high wavenumber modes to eliminate multi-dimensional aliasing. 

8. Shift data for one-dimensional alias control. 

9. Form needed £2 derivatives of data. 

10. Transform data into physical £2 space, shifted mesh. 

11. Execute Pass 2. 

Pass 2 

1. Transpose data to (6,^3) planes. 

2. Calculate additional velocity and form corrected velocity terms. 

3. Form needed £1 and £3 derivatives of data. 

4. Transform data into physical £1 and £3 space, shifted mesh. 

5. If second R-K substep, calculate max (^) . for CFL stability requirements. 

6. Form nonlinear terms in physical space, shifted mesh. 

7. Transform data into wave £1 and £3 space, shifted mesh. 

8. Transpose data to (£1,^2) planes. 

9. Execute Pass 1. 
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2.6    Boundary Conditions 

Periodic boundary conditions are imposed in the streamwise £x and spanwise £3 

directions 

s(6 + 2tf,k,6;<) = *(&,6,6;<) (2.65) 

where $ is any dependent variable. 

The boundary conditions imposed on the vorticity field in the cross-stream direc- 

tion £2 are that the vorticity is zero outside the resolved box 

UJ = 0       for 6 < 0    or    (2 > 2TT (2.67) 

and that the velocity perturbations go to zero at infinity 

^•(6,6,6;*) 6^°°i- (2-68) 

The boundary conditions imposed on the scalar field in the cross-stream direction 

are that each scalar concentration be the same at the top and bottom of the resolved 

box 

Q(6,0,6) = ^(6,27T,6). (2-69) 

This is most easily satisfied by picking initial scalar concentration distributions that 

go to zero in the freestream. 
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2.7    Initial Conditions 

2.7.1    Vorticity Field 

The initial conditions for the vorticity field of the time developing wake consist of a 

Gaussian mean streamwise velocity profile 

«! = 1 - Au^e-^ (2.70) 

ü2 = Ü3 = 0 (2.71) 

which gives the mean vorticity profile 

ü\ = uj>2 = 0. (2.72) 

ü>3 = -2c1Au$j0x2e-
ClX* (2.73) 

The centerline velocity defect, Aup, was chosen to be 0.692 and cx was chosen to 

be 0.69315. This particular profile was used in the experiments of Sato & Kuriki [39] 

and Corke, Krull, & Ghassemi [14], and in the computations of Chen, Cantwell, & 

Mansour [10]. It gives an initial wake halfwidth of bQ = 1.0 and an initial Reynolds 

number based on halfwidth of i?e& = 0.692/z/. 

For this mean velocity profile, the relationship between the various possible wake 

width length scales is as follows: 

bo = 1 (2.74) 

(1 - ü1)dx2 =(-)   Au^0b0 = 1.473&0 (2.75) 
-oo \C\/ 

690 = |_°° üx(l - ü1)dx2 = (^j2 f 1 - ^^- J Au^obo = 0.75246o. (2.76) 
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Though the wake halfwidth, 60, is used here as the reference scale (see Figure 2.2 on 

page 24), the other scales given above will be used later when comparing results to 

data from other studies. 

Small disturbances which were periodic in the streamwise and spanwise directions 

were added to the mean flow. 

+ JRea/[£ioo^iooexp(io;^i) 

+ £010^010 exp(z ) 

+ eooiiiooi exp(z ) 

+ £100n100(exp(i(a6 - #3 + <f>lw)) - exp(t(oei + ßCs + <T°))) 

+ £o^°(exp(^ - *» + ^) - exp(^ + ßf + I™)) 

+   •••] (2-77) 

where Q is any of the three vorticities, Ü = Ö(£2) is the mean flow, and Cl = Ö(£2) is 

a disturbance eigenfunction determined from linear theory as described in Appendix 

B. The quantities a and ß are the streamwise and spanwise wavenumbers of the 

fundamental mode respectively, and cf> is a disturbance phase angle. Subscripts 

indicate a two-dimensional disturbance, superscripts indicate a three-dimensional 

disturbance, and the positions of the "l"s indicate the streamwise wavelength of the 

mode. As an example, e001 is the disturbance amplitude of the three-dimensional 

disturbance at the sub-subharmonic streamwise wavelength. 

The disturbance phases, <f>, are all defined with respect to the two-dimensional 

fundamental disturbance, with <j> = 2-K corresponding to a physical shift of one fun- 

damental wavelength. For the two-dimensional disturbances, the phase is measured 
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Figure 2.4: Two-dimensional disturbance phasing 

from the first zero (£1 = 0) of the fundamental velocity disturbance to the first zero 

of the longer wavelength velocity disturbance as shown in Figure 2.4. Figures 2.5 

and 2.6 show the phase for the three-dimensional fundamental and three-dimension- 

al subharmonic disturbances respectively. In each case, the phase is measured from 

the first maximum of the two-dimensional vorticity fundamental disturbance to the 

first crossing of the maxima of the pair of oblique vorticity disturbances. 

Hence <^010 = 0 represents the phase of a three-dimensional subharmonic of the 

vorticity with its first crossing points aligned with the maximum of the two-dim- 

ensional fundamental. Similarly, 4>ow = 7r/4 represents a three-dimensional subhar- 

monic with its crossing points aligned with zeros of the two-dimensional fundamental. 

All of the flows simulated had two-dimensional disturbances at a wavelength 

equal to the fundamental (Kärmän) mode superimposed on the mean (sioo > 0). 

The three dimensional disturbances were pairs of oblique waves with equal and oppo- 

site spanwise wavenumbers oriented 60° to the spanwise direction (ß/ct = tan(60°)). 

This choice of three-dimensional modes was motivated by the stability analysis of 

Flemming [16] which suggested that the most unstable three dimensional modes 

should be wave pairs at angles near 60° at the subharmonic wavelength. The exper- 

imental observations of Corke, Krull, & Ghassemi [14] supported this analysis. 
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Figure 2.5: Disturbance phase for three-dimensional fundamental. 

The amplitude for each disturbance eigenfunction was chosen such that the inte- 

gral over x-i of the magnitude of the disturbance velocity eigenfunction for the given 

mode was equal to 0.02Uobo- This initial magnitude was found to be small enough 

for the initial wake growth to be within the linear regime. At the same time it was 

large enough to allow the wake to enter the non-linear growth regime without undo 

expenditure of of computational time. 

2.7.2    Passive Scalar Field 

Though the method allows for carrying an arbitrary number of passive scalars, in 

practice only one scalar was carried in the simulations. The initial passive scalar 

concentration at each point was taken to be the magnitude of the vorticity (the 

enstrophy density) 

Ci = ("*"*)*■ (2.78) 
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Figure 2.6: Disturbance phase for three-dimensional subharmonic. 

Since the vorticity perturbations were small, the initial scalar field is very nearly the 

square of the mean vorticity field 

d « 2ciAti£o|s2|e Cl*2. (2.79) 

After the simulation was initiated, the vorticity and scalar fields were allowed to 

evolve independently. 

2.7.3    Grid Stretching Rate 

The grid stretching rate, L2,t-, was initially set to follow al2~(t- t0)1/2 growth 

curve to match the expected long-time growth of the wake. This gives 

LtÄt) = 2t0L2(t) 
(2.80) 
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where to is a virtual time origin which depends on the initial Reynolds number. 

The growth rate was periodically adjusted manually as the simulations progressed 

to keep the magnitude of the mean vorticity at the boundaries of the resolved box 

below a fixed percentage of the maximum mean vorticity magnitude. This manual 

adjustment was primarily necessary during the initial stages in the development of 

the wakes when the growth was significantly different than the asymptotic 21/2 curve. 

2.7.4    Flow Reference Convention 

In order to facilitate references to the various wake flows discussed throughout the 

remainder of this document, it is useful to introduce a standard naming convention 

which will present all the relevant information about a given flow in a compact form. 

From this point forward, the simulations presented here will be referenced with a 

tag of the form 

(R)((A)tD
D\ (2.81) 

where (R) is the initial wake halfwidth Reynolds number, Rei,, (A) is the angle of 

the three-dimensional disturbances with respect to the spanwise direction (zero if 

the flow is two-dimensional), and (2D) and (3D) are three-element strings which 

indicate which disturbance modes are present and gives their phases with respect to 

the two-dimensional fundamental disturbance. 

The possible elements in the strings (2D) and (3D) are x, which indicates the 

given mode is not present, and 0, 7r/4, or 7r/2 which indicate that the given mode is 

present and is at the corresponding phase with respect to the fundamental. The loca- 

tion of the element in the string gives the wavelength of the disturbance as outlined 

above for e and <j). The first slot indicates a disturbance at the fundamental stream- 

wise wavelength, the second indicates a disturbance at the subharmonic streamwise 
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wavelength, and the third indicates a disturbance at the sub-sub-harmonic stream- 

wise wavelength. 

As an example, the tag 346 (ÖO)^ refers to a wake with a Reynolds number 

of Reb = 346, and disturbances corresponding to a two-dimensional fundamental 

(which must be at a phase of 0 to itself), a two-dimensional subharmonic with 

(j)QW = TT/2, and a pair of 60° oblique disturbances with <f>010 = ir/A. 

In addition, the wildcard character '(?)' will be used to indicate that the given 

parameter can take on any appropriate value. For example, the tag 346(60)ozrx 

refers to all Reb = 346 wakes with a two-dimensional fundamental, a two-dimension- 

al subharmonic with <^oio = T/4, and a pair of 60° oblique disturbances at any of 

the calculated phases. The tag (?)(60)Q°| refers to all wakes with a two-dimensional 

fundamental, a pair of 60° oblique disturbances with <jPw = 0, and any of the initial 

Reynolds numbers simulated. 

2.8    Code Validation 

The code has been validated with three sets of test cases. The first two tests, pure 

diffusion and linear disturbance cases, compare results from the code to linear flow 

solutions. The third is a comparison of results for identical initial conditions between 

the present code and the well tested and generally accepted code of Spalart, Moser, 

& Rogers [44] The results of these test cases are outlined below. 

2.8.1    One Dimensional Diffusion 

For two-dimensional parallel flow in the xx direction, the Navier-Stokes equations 

reduce to the one-dimensional diffusion equation 

U\,t - VUl,22- (2.82) 
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This equation admits analytic solutions for the diffusing parallel wake 

2 
IQ      s I / •" 2 

»^l-A^TT^-i^) (2-83) 

and for the diffusing parallel mixing layer 

Ul = 2erf( *'       J -1- (2-84) 

To check agreement with the analytic solutions, four two-dimensional test cases 

were run: two parallel wakes started from a Gaussian velocity profile, one with grid 

stretching turned off and one with grid stretching turned on; and two parallel mixing 

layers started from an error function profile, again with grid stretching off in the first 

and on in the second. Each case was run on a 4 x 128 x 4 grid on two computational 

nodes. Two computational nodes were not required by the problem size, but were 

used to verify internode message passing. 

The numerical results and the analytic solutions are plotted in Figures 2.7, 2.8, 

and 2.9. The wake flow halfwidth, 6, is defined as half the width at half the centerline 

defect velocity. The mixing layer vorticity thickness is defined as the freestream 

velocity difference divided by the maximum mean vorticity (in this case the vorticity 

at the centerline). 

The agreement between the numerical results and the analytic predictions for 

t < 50.0 is excellent for both wake cases and for t < 225.0 for both mixing layer 

cases. Past a time of t = 50.0 for the wake and t — 225.0 for the mixing layer the 

simulations with fixed grids begin to deviate significantly from the analytic solutions 

as the vorticity field outgrows the resolved domain. This violates, benignly, the 

requirements of the numerical scheme. 
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Figure 2.7: Halfwidth vs. time for Reb = 35 diffusing parallel wake. L2(0) = 10.0. 
D: Computed wake on fixed grid, L2,t(t) = 0.0. O: Computed wake on growing 
grid, L2,t(t) = 0.125.    : Analytic solution. 
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Figure 2.8: Vorticity thickness vs. time for Ree - 50 diffusing parallel mixing layer. 
L2(0) = 10.0. □: Computed mixing layer on fixed grid, L2,t(t) = 0.0. O: Computed 
mixing layer on growing grid, L2,t{t) = 0.18.   : Analytic solution. 
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Figure 2.9: Centerline velocity defect and total x2 momentum vs. time for Reh = 35 
diffusing parallel wake. L2(0) = 10.0. □: Computed wake on fixed grid, L2,t{t) = 0.0. 
O: Computed wake on growing grid, L2,t(t) = 0.125.    : Analytic solution for 
centerline velocity defect. : Analytic solution for total x2 momentum. 

The excellent agreement for even very late times for the cases with the grid 

growing to keep pace with the spreading vorticity indicates that the diffusion portion 

of the code, including the implementation of the growing grid, works properly. Over 

the course of the runs the wake simulation grid grew by a factor of nearly five and 

the mixing layer grid grew by a factor of over nineteen. These are rather stringent 

tests of the diffusion part of the implementation. 

2.8.2    Linear Growth Rate 

The second verification test for the code was a comparison between eigenmode 

growth rates for a computed solution of the Navier-Stokes equations using the 

present code and the eigenmode growth rates predicted by linear stability theory. 

The numerical simulation started from a Gaussian mean profile perturbed by a very 

low amplitude most-unstable eigenfunction (as predicted from linear theory).  The 
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Figure 2.10: Magnitude of two-dimensional fundamental disturbance vs. time for 
parallel wake.    : Linear stability prediction. O: Computed flow. 

eigenmode growth rate was calculated by assuming that each eigenmode can be rep- 

resented by a wave having complex growth rate ac and complex modeshape U{. In 

particular, for the u\ velocity component 

u1(a,x2;t) = U1(a,x2)e —tact (2.85) 

Taking the logarithm of equation 2.85 and solving for the real part of the result 

yields an equation for the growth of the disturbance 

acit = Real[\nüi(a,X2',t) — lnl7i(a, x2) (2.86) 

Hence, the growth rate, ac{, is the rate of change of the real part of of the logarithm 

of the given dependent variable. 

Figure 2.10 shows the calculated linear growth rate and the predicted linear 

growth rate for the test computation. The numerical simulation was performed on 

a 128 x 128 x 4 grid on 4 processor nodes.   The flow Reynolds number was set 
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at Reh = 1384 to reduce the effect of viscosity on the results as much as possible 

without requiring excessive resolution. Agreement between prediction and the com- 

putation is excellent. Deviations in growth rate near t = 0 are due to small errors 

in the disturbance eigenfunction incurred while mapping the disturbance from the 

nonuniform numerical mesh used by the linear stability solver code to the uniform 

numerical mesh used in the simulation code. The slight dropoff in the growth rate 

at late times for the computed flow is due to viscous spreading of the mean flow, 

which is not accounted for in the linear theory. 

2.8.3     Comparison with Accepted Jacobi Polynomial Code 

The final test consisted of a comparison between a numerical simulation using the 

present code and a numerical simulation started from identical initial conditions 

using the accepted code developed by Spalart, Moser, & Rogers [44] (hereafter 

referred to as the SMR code). 

Figure 2.11a shows the three-dimensional vorticity magnitude for a i?e& = 346 

wake started from a Gaussian mean velocity profile with a two-dimensional distur- 

bance at the most unstable (Karman) wavelength and a three-dimensional distur- 

bance at the subharmonic wavelength and 60° from the spanwise direction. For this 

case grid growth was active with Li,t = 0.1, which translates to a 50% increase in 

grid size from the initial grid to the grid at the time shown. This condition should 

provide the most stringent test of code performance. 

Figure 2.11b shows the identical flow calculated using the Rogers and Moser 

code. Some differences between the two calculations are expected due to differences 

in the computational grid and time advance algorithms. Despite this, the magnitude 

and shape of the structures in both codes are very similar even at the advanced 

time shown. Such excellent agreement is a strong indicator that the code functions 

properly. 
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Figure 2.11 
346(60) III wake 

Enstrophy Density isosurface from direct numerical simulations of 
U = 0.7. (a) Present code, t = 103.3. (b) SMR code, t = 104.4. 
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Figure 2.12: Wake halfwidth vs. time for direct numerical simulation of 346(60) xOx 
Oxx 

wakes. : Present code. □ SMR code. 

As a check of the resolution of the test simulation, two variants of the Taylor 

microscale, Ar (calculated from all three velocity components) and Aji (the tra- 

ditional microscale calculated from only the streamwise velocity) were computed 

as functions of £2 (see Appendix A for definitions of the microscales used). Both 

measures gave a minimum nondimensional microscale length of approximately 0.9 

(Ay = 0.83, Axi = 0.87) at the time shown in Figure 2.11a. That length corresponds 

to a minimum of approximately 5 grid points in any direction, thus it is reasonable 

to conclude that the flow is sufficiently resolved. 

Figure 2.12 is a plot of the square of the flow halfwidth versus time for the same 

two simulations. This represents a good measure of how well the codes match mean 

flow characteristics. There is no significant difference between the results obtained 

from the two codes. The small deviations at late time are due to small difference 

in flow time and the fact that the vorticity field is beginning to outgrow the well 

resolved portion of the fixed mesh in the SMR code. 

This test also gives a rough comparison of performance between the two codes. 

The iPSC/860 run required 5 hours on 16 of the available 128 nodes to run to the 
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time shown. The Cray simulation took approximately 15 cpu hours spread out over 

2 weeks of run time on a single processor of an 8 processor Cray-YMP. 

2.8.4    Behavior Near the Matching Boundaries 

The fundamental assumption of this method is that the vorticity remains confined 

to the resolved domain (it is compact) and therefore the vorticity magnitude at the 

matching boundaries remains negligible. It is important to know if this assumption 

is valid in cases of interest, and what consequences arise when these assumptions 

are violated. 

Figures 2.13 and 2.14 show the behavior of the vorticity magnitude, normalized 

by the maximum vorticity magnitude in the flow, near the matching boundaries for 

two wake simulations. Figure 2.13 is data from the low Reynolds number two-dimen- 

sional diffusing wake discussed in Section 2.8.1. Figure 2.14 is data from the higher 

Reynolds number strongly three-dimensional wake discussed in Section 2.8.3. The 

sample line for the data in this figure was chosen to be the one on which the high 

enstrophy density regions of the wake pass closest to the edge of the box at late 

times. This line of data represents the worst case condition. 

At early times in each flow, the behavior of the vorticity magnitude near the 

matching boundaries fit very well with the assumptions of the numerical method 

(max \uj\edge <C max \coj\jiow). Even at late times the flow near the boundary remains 

well behaved. The small amplitude ripples near the matching boundary for the late 

time of the Reb = 346 wake are due to the slight mismatch in the vorticity magnitude 

between the top and bottom edges of the resolved domain. Attempting to resolve 

this small jump using a finite set of basis functions results in Gibbs phenomenon 

waves near the jump point. 

These small ripples are not a significant source of error in the simulations for 

a number of reasons.   First, the magnitude of the Gibbs phenomena ripples are 
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proportional to the magnitude of the vorticity mismatch across the edges of the 

resolved box. Thus so long as the vorticity mismatch is kept small, the magnitude 

of the ripples will be small. Second, the Gibbs phenomena ripples represent both 

positive and negative deviations in the vorticity field (note that Figure 2.14 shows 

magnitude). Since the ripples are confined primarily to the edges of the resolved 

box, far from the vorticity containing region of the wake, the integrated (Biot- 

Savart) effect of the ripples is much smaller than the magnitude of the ripples would 

suggest. Finally, the Gibbs phenomena ripples occur at the highest wavenumbers, 

which are strongly damped in a well resolved viscous flow. Here the magnitude of 

the Gibbs waves are less than 0.2% of the maximum mean vorticity at their worst 

(cut through widest part of the wake). This magnitude is easily small enough to 

keep from having a significant influence on the flow. 
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SECTION 3 

TWO-DIMENSIONAL SIMULATIONS 

3.1    Motivation 

In order to have a reference with which to compare the three-dimensional wake calcu- 

lations presented in the next chapter (starting on page 100), a set of two-dimensional 

plane wakes was simulated with a variety of initial conditions and Reynolds num- 

bers. The effect of these parameters on the evolution of two-dimensional structures 

in a wake and on the mean velocity profile is examined in this section. 

3.2    Simulation Parameters 

Two-dimensional simulations require a relatively small investment of computational 

resources, and are therefore ideal for parametric investigations. Simulations with a 

variety of combinations of disturbance wavelength and phases, and flow Reynolds 

numbers were run. All of the simulations were initiated from a Gaussian mean 

wake profile upon which a most unstable anti-symmetric (Karman) disturbance is 

superimposed. Combinations of subharmonic and sub-subharmonic disturbances 

were added to the initial fields in some of the simulations. Wake Reynolds numbers 

based on initial wake halfwidth and centerline defect velocity were varied from Ret, = 

69 to Reb = 2768. The initial passive scalar field in all the simulations was set equal 

to the initial enstrophy density at each point 

Cj = {ukuk)* . (3.1) 
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Figure 3.1: Two-dimensional disturbance phasing 

and the Prandtl number 
v 

Pr=- 
K 

(3.2) 

was set to a value of 0.7.   Table H.l in appendix H lists all the two-dimensional 

wakes simulated and their parameters. 

Figure 3.1 gives a graphic summary of the disturbance wavelengths and the 

meaning of the disturbance phases used in the two-dimensional simulations. Initial 

disturbances were combinations of most-unstable eigenmodes at the fundamental, 

subharmonic, and sub-subharmonic wavelengths. Note that the phase is always in 

reference to the wavelength of the fundamental, so (for example) a phase of TT/2 

results in a shift of one quarter of a fundamental wavelength. See Section 2.7 for a 

more general description of the disturbance functions. 

3.3    Evolution of the Two Dimensional Wake 

3.3.1    Initial Development 

For all of the two-dimensional wakes studied, the early evolution followed the same 

general pattern. This is typified by Figure 3.2, which shows contour plots of vorticity 

at several times for the 346(0)g££ run (an Reb = 346 wake with a two-dimensional 

fundamental only). Note that these plots are in a frame of reference moving with the 

free stream (moving left to right at speed U0 > ü^), hence the structures will appear 
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^ ^ 

(e) (f) 

Figure 3.2: Iso-vorticity contours for 346(0)g^ wake (two-dimensional fundamental) 
at various times, (a) t = 22.6. (b) t = 49.7. (c) t = 70.1. (d) t = 83.6. (e) t = 97.1. 
(f) i = 198.6. Contours are 0.01 < |w| < 0.4 in increments of 0.05. 
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Figure 3.3: Mean and fundamental mode energies versus time for 346(0)g££ wake. 
 : 0.1 x mean flow energy. : Fundamental disturbance energy. 

to be convecting from right to left. The evolution starts with the linear growth of 

the disturbances, dominated by the growth of the most unstable (fundamental) 

wavelength perturbation (Figure 3.2a). This is followed by nonlinear growth and 

rollup of the fundamental disturbance into a Karmän vortex street (Figure 3.2b), 

which consists of a staggered double row of roughly circular regions of vorticity, 

known as "rollers." These are positive signed on the bottom of the wake, negative 

signed on the top, and separated by regions of low enstrophy density (Figure 3.2e). 

In the absence of longer wavelength disturbances, the rollers become roughly circular 

in cross section (Figure 3.2f) and settle into a stable configuration. The wake then 

slowly diffuses under the influence of viscosity. 

The process of linear growth, saturation, and decay described above is readily evi- 

dent in Figure 3.3 which shows the time evolution of the mode energy (the energy 

contained in motions with a given streamwise wavelength) of the mean flow and 

fundamental disturbance. Note that, in the figures, the mean energy line has been 

rescaled to fit on the same plot as the fundamental mode energy. The fundamental 

mode energy grows exponentially (linear growth region) until approximately t = 30, 

60 



the fundamental mode then enters a nonlinear growth regime, and saturates at 

approximately t = 50 (at which time the vortex street has formed). Up to this time 

the fundamental mode has been drawing energy from the mean flow. The funda- 

mental mode then begins to decay, releasing energy into both shorter wavelength 

disturbances and back into the mean flow. Oscillations in both the fundamental and 

mean mode energies past a time of 100 represent a long period exchange of energy 

between the mean flow and fundamental. These oscillations damp out as the wake 

slowly approaches an asymptotic state in which the wake is dominated by diffusion 

of the vortex street. These oscillations will appear again in plots of the evolution of 

the halfwidth of this wake presented later in this chapter (Figures 3.17 and 3.19). 

Returning to the enstrophy density plots, Figure 3.2c and Figure 3.2d show 

a pinching off event in the development of the 346(0)££ wake- Fluid containing 

vorticity of the opposite sign is convected across the wake centerline to the opposite 

side of the wake during the rollup process. This sort of event is not unique to the 

temporal wake. A similar convection of fluid across the wake is evident in the flow 

visualizations of the wake behind a circular cylinder by Zdravkovitch [59] and direct 

numerical simulations of a spatially evolving two-dimensional wake by Maekawa & 

Mansour [24]. 

Note that there is a slight asymmetry across the wake at the latest time shown 

in this simulation. This asymmetry is due to the accumulation of small errors intro- 

duced by the approximate dealiasing scheme, which introduces a very small ampli- 

tude random forcing at the longest wavelengths. Such small numerical errors are 

sufficient to break the exact numerical symmetry over a very long calculation, but 

do not have a significant impact on the overall results at the times examined. 
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Figure 3.4: Iso-vorticity contours for 346(0)^ wake (two-dimensional fundamental 
and subharmonic) at various times, (a) t = 27.5. (b) t = 54.5. (c) t = 86.5. (d) t = 
119.3. (e) t = 144.7. (f) t = 200.8. (g) t = 304.1. Contours are 0.01 < |w| < 0.4 in 
increments of 0.05. (Cont.) 
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00 

Figure 3.4: Iso-vorticity contours for 346(0)gg£ wake (two-dimensional fundamental 
and subharmonic) at various times, (a) t = 27.5. (b) t = 54.5. (c) t = 86.5. (d) t = 
119.3. (e) t = 144.7. (f) t = 200.8. (g) t = 304.1. Contours are 0.01 < |w| < 0.4 in 
increments of 0.05. (Cont.) 
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Figure 3.4: Iso-vorticity contours for 346(0)go£ wake (two-dimensional fundamental 
and subharmonic) at various times, (a) t = 27.5. (b) t = 54.5. (c) t — 86.5. (d) t = 
119.3. (e) t = 144.7. (f) t = 200.8. (g) t = 304.1. Contours are 0.01 < |w| < 0.4 in 
increments of 0.05. 
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Figure 3.5: Iso-vorticity contours for 346(0)g£* wake (two-dimensional fundamental 
and subharmonic at |) at various times, (a) t = 27.6. (b) t = 54.7. (c) t = 85.6. 
(d) t = 118.7. (e) t = 144.6. (f) t = 157.1. (g) t = 198.7. Contours are 0.01 < \u\ < 
0.4 in increments of 0.05. (Cont.) 
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Figure 3.5: Iso-vorticity contours for 346(0)gf* wake (two-dimensional fundamental 

and subharmonic at \) at various times, (a) t = 27.6. (b) t = 54.7. (c) t = 85.6. 
(d) t = 118.7. (e) t = 144.6. (f) * = 157.1. (g) t = 198.7. Contours are 0.01 < M < 
0.4 in increments of 0.05. (Cont.) 
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(d) 

Figure 3.5: Iso-vorticity contours for 346(0)g£* wake (two-dimensional fundamental 

and subharmonic at f) at various times, (a) t = 27.6. (b) t = 54.7. (c) t = 85.6. 
(d) t = 118.7. (e) t = 144.6. (f) t = 157.1. (g) t = 198.7. Contours are 0.01 < |w| < 
0.4 in increments of 0.05. 
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Figure 3.6: Iso-vorticity contours for 346(0)o£* wake (two-dimensional fundamental 
and subharmonic at ^) at various times, (a) t = 27.6. (b) t — 54.6. (c) t = 84.9. 
(d) t = 107.2. (e) t = 119.6. (f) t = 155.4. (g) t = 247.7. (h) t = 301.1. Contours 
are 0.01 < |a;| < 0.4 in increments of 0.05. (Cont.) 
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Figure 3.6: Iso-vorticity contours for 346(0)gi* wake (two-dimensional fundamental 

and subharmonic at f) at various times, (a) t = 27.6. (b) t = 54.6. (c) t = 84.9. 
(d) t = 107.2. (e) t = 119.6. (f) t = 155.4. (g) t = 247.7. (h) t = 301.1. Contours 
are 0.01 < |o;| < 0.4 in increments of 0.05. (Cont.) 
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(e) 

Figure 3.6: Iso-vorticity contours for 346(0)^ wake (two-dimensional fundamental 
and subharmonic at |) at various times, (a) t = 27.6. (b) t — 54.6. (c) t = 84.9. 
(d) t = 107.2. (e) t = 119.6. (f) t = 155.4. (g) t = 247.7. (h) t = 301.1. Contours 
are 0.01 < \u>\ < 0.4 in increments of 0.05. 
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Figure 3.7:   Mean, fundamental, and subharmonic mode energies versus time for 
346(0)gof wake.    : 0.1 x mean flow energy.    : Fundamental mode energy. 
 : Subharmonic mode energy. 
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Figure 3.8:   Mean, fundamental, and subharmonic mode energies versus time for 
346(0)o£*r wake.    : 0.1 x mean flow energy.   : Fundamental mode energy. 
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 : Subharmonic mode energy. 
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Figure 3.9:   Mean, fundamental, and subharmonic mode energies versus time for 
346(0)ol* wake.    : 0.1 x mean flow energy.    : Fundamental mode energy. 

 : Subharmonic mode energy. 

3.3.2     Effect of Disturbance Wavelength and Phase 

The presence of a fundamental wavelength disturbance causes the initially uniform 

wake to develop into the familiar double row of vortices that make up the Kärmän 

vortex street. The rows of vortices are staggered, with the array of rollers on one 

side of the wake being 180° out of phase with the the rollers on the other side. The 

addition of longer wavelength disturbances has the effect of strengthening some of 

the rollers while simultaneously weakening others. This causes the rollers to merge, 

orbit one another, or shred as the wake evolves. The details of the evolution depend 

on which rollers are strengthened or weakened, and hence depends on the relative 

phasing of the fundamental and subharmonic disturbances. Figures 3.4, 3.5, and 

3.6 show the evolution of the vorticity fields for the wakes 346(0)™?, 346(0)ol^, and 
4 

346(0)0?%. As stated above, the initial development of all of these wakes parallels 

that of the flow in Figure 3.2, which has only the fundamental wavelength distur- 
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bance, up through the development of the vortex street. Significant differences arise 

only after the fundamental disturbance begins to saturate during rollup. 

In the wake in Figure 3.4 (346(0)g^), the subharmonic, which is at zero phase 

with respect to the fundamental, acts to strengthen one of the rollers on the top of 

the wake while weakening the other (Figure 3.4b). Because of the phasing, the two 

rollers on the bottom of the wake are initially of equal strength (the subharmonic 

disturbance has zero amplitude at the locations where the bottom rollers form). 

The strong top roller captures both of the bottom rollers (Figure 3.4c), stretching 

them and forcing them together (Figure 3.4d). The elongated bottom rollers then 

agglomerate leaving a single new bottom roller and a pair of top rollers which are of 

roughly equal strength (Figure 3.4e,f). One of the top rollers is then pulled to the 

bottom of the wake and sandwiched between the (periodic) bottom rollers. There 

it is stretched and slowly absorbed by the bottom roller (Figure 3.4g) 

The wake in Figure 3.5 (346(0)gi*), which has a subharmonic at a phase of 7r/4 
4 

with respect to the fundamental (shifted by one eighth of a fundamental wavelength), 

follows a similar evolution as the wake in Figure 3.5. A dominant top roller forms 

which causes the bottom rollers, which in this case are of slightly different strengths, 

to agglomerate into a single large roller. This is followed by the bottom roller 

capturing one of the top rollers and forming a vortex pair. It is not clear whether 

this is a stable arrangement, but it persists well past t — 200. 

Simulations by Aref & Siggia [1] of a two-dimensional inviscid wake using a 

discrete vortex method showed similar results. When they initiated their simulations 

with a random variation in the position of their vortices (which translates into a 

random initial disturbance field) they observed pairing of regions of vorticity of the 

same sign and the formation of vortex pairs (as seen here) and triplets. The vortex 

pairs were observed to persist through the length of the simulations. 
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Williamson & Roshko [56], in experiments on vortex formation in the wake of an 

oscillating cylinder, observed similar asymmetric pairing of vortices. By varying the 

frequency and amplitude of oscillation, they were able to produce repeatable wakes 

with various combinations of single vortices and pairs of opposite signed vortices. 

Under certain conditions the vortex pairs would self-convect away from the wake 

centerline (cf. their Figure 17), much as is seen here in Figures 3.4 and 3.5. 

The wake in Figure 3.6 (346(0)£i*), which has a subharmonic at a phase of TT/2 

with respect to the fundamental (shifted by one quarter of a fundamental wave- 

length), undergoes a markedly different evolution. In this simulation, the phasing 

of the subharmonic disturbance creates a symmetry condition such that each side of 

the wake develops a strong roller and a weak roller, with the difference in strength 

between the rollers on each side of the wake the same. Instead of one side of the 

wake pairing and then absorbing a roller from the other side, the symmetry of the 

flow allows the rollers on both sides of the wake to pair simultaneously. Note that 

this results in a much faster growth of the new vortex street than either of the other 

two wakes presented (t « 160.0 as opposed to t > 200.0 for both 346(0)g^ and 

346(0)g£*). The resulting wake is nearly symmetric across the wake centerline (the 
4 

small asymmetry is due to the fact that the value of TT could only be represented to 

a finite accuracy), which is not the case for the wakes in Figures 3.4 and 3.5. 

Maekawa, Mansour, k Buell [24] performed direct numerical simulations of the 

two-dimensional spatially evolving incompressible wake forced with high amplitude 

random noise. Groups of structures very similar to those which appear in Figures 

3.4, 3.5, and 3.6 appear in those simulations (cf. their Figure 11). At least for some 

structures in the spatially evolving wake, the random noise behaves dynamically like 

a fundamental plus a subharmonic at a random phase. 

Figures 3.7, 3.8, and 3.9 show the evolution of the mean, fundamental, and 

subharmonic mode energies for the wakes shown in Figures 3.4, 3.5, and 3.6.   Up 
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to a time of approximately t = 30 the energies of the mean and fundamental mode 

develop as if there were no subharmonic disturbance present. This is consistent with 

the fact that up to that time the wake is in a linear growth regime, and therefore 

the main flow of energy should be from the mean to the fundamental. 

After a time of t = 30, the subharmonic has gained enough energy to begin to 

affect the development of the fundamental mode. The presence of the subharmonic 

disturbance, which initially saps energy from the fundamental, lowers the satura- 

tion (peak) energy of the fundamental disturbance and causes it to saturate slightly 

earlier. The subharmonic experiences a "mini-saturation" slightly after the funda- 

mental mode saturates, and begins to decay until a time of approximately t = 60. 

The subharmonic then begins to rapidly extract energy from the fundamental dis- 

turbance. 

Up to a time of t = 90 the energies in the flows with a subharmonic disturbance 

develop identically, independent of phase. The time t = 90 corresponds to the 

time at which the rollers in the initial fundamental wavelength vortex street begin 

to pair (Figures 3.4c/d, 3.5c/d, and 3.6c/d). After t = 90 evolution of the mode 

energies begins to become phase dependent. Between t = 90 and t = 150 all of the 

subharmonic wakes show a periodic exchange of energy between the fundamental and 

subharmonic disturbances, as well as between the fundamental and the mean (this is 

most obvious in Figure 3.9, but appears to a lesser degree in the other two figures). 

In each case, the fundamental eventually decays, dumping its energy into both the 

subharmonic and the mean, leaving the subharmonic as the dominant disturbance 

mode. 

All of the wakes with subharmonic disturbances develop large structures that 

could potentially be constricted by the finite streamwise size of the box. To attempt 

to get a handle on the significance this constriction on the development of the wakes 

in Figures 3.4 through 3.6, a wake with a sub-subharmonic disturbance was simu- 
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(a) 

(b) 

Figure 3.10: Iso-vorticity contours for 346(0)goo wa^e (two-dimensional fundamental, 
subharmonic, and sub-subharmonic) at various times, (a) t = 25.5. (b) t = 48.6. 
(c) t = 102.5. (d) t = 204.4. Contours are 0.01 < |CJ| < 0.4 in increments of 0.05. 

(Cont.) 
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Figure 3.10: Iso-vorticity contours for 346(0)goo wake (two-dimensional fundamental, 
subharmonic, and sub-subharmonic) at various times, (a) t = 25.5. (b) t = 48.6. 
(c) t = 102.5. (d) t = 204.4. Contours are 0.01 < \u\ < 0.4 in increments of 0.05. 
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Figure 3.11: Mean, fundamental, subharmonic, and sub-subharmonic mode energies 
versus time for 346(0)OQO wake.   : 0.1 x mean flow energy. : Fundamental 
mode energy.    :  Subharmonic mode energy.    :  Sub-subharmonic mode 
energy. 

lated. Figure 3.10 shows plots of iso-vorticity contours at four times in the develop- 

ment of the 346(0)§§£ wake. Comparing Figure 3.10 with the results for the 346(0)gg£ 

wake in Figure 3.4, it is clear that at least up to a time of t = 200, the finite length 

of the computational box is not unduly affecting the wake structure. The sub-sub- 

harmonic disturbance has only a small noticeable effect on the development of the 

wake. Only at very late times is the presence of the sub-subharmonic disturbance 

likely to become important, but for the moderate times studied here and in the 

three-dimensional simulations it is reasonable to assume that a subharmonic length 

box is sufficient. 

Figure 3.11 shows the evolution of the mean, fundamental, subharmonic, and 

sub-subharmonic mode energies for the wake in Figure 3.10. Comparing this figure 

to the corresponding figure for the 346(0)oo£ wake (Figure 3.7 on page 71) it is clear 

that the sub-subharmonic disturbance remains at a very low energy late until in the 

simulation. The sub-subharmonic has no noticeable impact on the evolution of the 
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energies of the shorter wavelength disturbances up until a time of approximately 

f = 150. After that time, the sub-subharmonic disturbance begins to slowly draw 

energy from the (dominant) subharmonic mode. Even at the latest time simulated 

the sub-subharmonic is beginning to grow rapidly at the expense of the subharmonic, 

but is still much weaker than the subharmonic mode. 

3.3.3    Effect of Reynolds Number 

Figures 3.12, 3.13, 3.14, and 3.15 show contour plots of vorticity for sets of wakes 

with the same initial disturbances at approximately the same time, but with different 

Reynolds numbers. In general, varying the Reynolds number has minimal effect on 

the large scale structure of the flow (given a high enough Reynolds number to allow 

the initial rollup). The major differences between flows with different Reynolds 

numbers has to do with the development of small scales. 

At very low Reynolds numbers (Figure 3.12a), viscosity dominates the wake 

to the point that it never enters the nonlinear growth regime. At slightly higher 

Reynolds numbers (Figures 3.12b, 3.13a 3.14a, and 3.15a), the wake rolls up and 

nonlinear dynamics, including pairing of the rollers, are evident. The structures are 

still very diffuse, however, and adjacent regions of opposite signed vorticity annihilate 

each other quickly. 

As the Reynolds number increases (Figures 3.12c-f, 3.13b,c 3.14b,c, and 3.15b,c), 

the decay of the intensity of the large vortical structures is significantly reduced and 

much smaller vorticity scales begin to appear. These small scales are the result 

of vortical regions being wrapped and folded around the rollers and vorticity being 

stretched in the high strain-rate regions between rollers. Without the strong diffusion 

present in the wakes with lower Reynolds number, these fine structures do not get 

smeared out or absorbed by the larger structures. 
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Figure 3.12: Iso-vorticity contours for (?)(0)g^ wakes (two-dimensionalfundamental 
with various Reynolds numbers), (a) Reb = 69, t = 200.7. (b) Reb = 119, t = 201.8. 
(c) Reb = 346, t = 198.6. (d) Reb = 692, t = 201.3. (e) Reb = 1384, t = 197.8. 
(f) Reb = 2768, t = 196.3. Contours are 0.01 < |w| < 0.4 in increments of 0.05. 
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Figure 3.13: Iso-vorticity contours for (?)(0)oo£ wakes (two-dimensional fundamental 
plus subharmonic with various Reynolds numbers), (a) Reb = 119, t = 194.6. 
(b) Reb = 346, t = 200.8. (c) Reb = 692, t = 199.1. (d) Reb = 1384, t = 208.1. 
Contours are 0.01 < \LO\ < 0.4 in increments of 0.05. 
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Figure 3.14: Iso-vorticity contours for (?)(0)gl* wakes (two-dimensional fundamental 
plus subharmonic at | with various Reynolds numbers), (a) Reb = 119, t = 201.4. 
(b) Reb = 346, t = 198.7. (c) Reb = 692, t = 193.4. (d) Reb = 1384, t = 195.2. 
Contours are 0.01 < \u\ < 0.4 in increments of 0.05. Arrow indicates rollup of 
secondary shear layer. 
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Figure 3.15: Iso-vorticity contours for (?)(0)gf^. wakes (two-dimensionalfundamental 
plus subharmonic at | with various Reynolds numbers), (a) Reb = 119, t = 205.3. 
(b) Reb = 346, t = 196.0. (c) Reb = 692, t = 197.3. (d) Reb = 1384, t = 200.2. 
Contours are 0.01 < \co\ < 0.4 in increments of 0.05. 
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As the Reynolds number increases there is also an increase in the strength and 

persistence of the vorticity in the fluid which has been convected across the wake 

in pinching off events during rollup and pairing. These pockets of pinched off fluid 

contain vorticity of the opposite sign as the rollers, adding significant complexity to 

the overall wake structure. 

For the cases with pairing, at the higher Reynolds numbers (Figures 3.13c,d 

3.14c,d, and 3.15c,d) the postpairing rollers show small scale internal structures 

(this is most evident in Figure 3.13d, where the bottom "roller" still consists of two 

separate structures). There is also evidence of the onset of secondary rollup of the 

small scale shear layers which develop during the pairing process. The most obvious 

of these is in the long thin structure at the top of Figure 3.14d (see arrow). 

3.3.4    Scalar Field 

Figure 3.16 shows contours of enstrophy density and scalar concentration for three 

of the wakes discussed above. Since the initial scalar field was set to the initial 

enstrophy density field, it is reasonable to assume that contour plots of these quan- 

tities should be similar in appearance. Any major differences are due to the fact that 

vorticity can be canceled out by vorticity of the opposite sign whereas the scalar is 

a positive quantity which is conserved. 

It is clear from Figure 3.16 that even at high Reynolds numbers where there 

is complex structure to the wake, the scalar field and the enstrophy density field 

are similar. Portions of the flow which have large enstrophy density tend to be 

regions where vorticity of opposite signs is not present. These regions have matching 

large values for the passive scalar. Regions of the flow with nonzero passive scalar 

concentrations but little enstrophy density correspond to once-vortical fluid which 

has undergone cancellation. 
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(a) G>) 

(c) (d) 

Figure 3.16: Comparison of iso-enstrophy density and iso-scalar contours for 
1384(0)0(7)3; wakes (two-dimensional fundamental and subharmonic at various 
phases). 1384(0)gg£, t = 208.1. (a) Enstrophy Density, (b) Passive scalar. 
1384(0)51*, t = 195.2. (c) Enstrophy Density, (d) Passive scalar. 1384(0)5|*, 

t = 200.2. (e) Enstrophy Density, (f) Passive scalar. Contours are 0.05 < |a;|,Ci < 
0.4 in increments of 0.05. Arrows indicate entrained fluid. (Cont.) 
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Figure 3.16: Comparison of iso-enstrophy density and iso-scalar contours for 
1384(0)O?TL wakes (two-dimensional fundamental and subharmonic at various 
phases). 1384(0)gg£, t = 208.1. (a) Enstrophy Density, (b) Passive scalar. 
1384(0)^, t = 195.2. (c) Enstrophy Density, (d) Passive scalar. 1384(0)£|*, 

t = 200.2. (e) Enstrophy Density, (f) Passive scalar. Contours are 0.05 < |w|,Ci < 
0.4 in increments of 0.05. Arrows indicate entrained fluid. 
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The scalar concentration plots in Figure 3.16 give a good estimate for the level 

of entrainment of free-stream fluid by the various wakes. The wake in Figure 3.16b 

(1384(0)So£) has entrained a large quantity of fluid from both the freestream above 

and below the wake (see arrows). In contrast, the wake in Figure 3.16f (1384(0)§i*) 

has entrained very little freestream fluid (only what has been convected in between 

the periodic rollers on each side of the wake — see arrows). The differences in 

entrainment make a significant difference in the mixing which occurs in these wakes, 

and has a strong impact on their relative growth rates. 

3.4    Growth of the Mean Flow 

In all of the simulations, the mean velocity profile is defined to be the average 

velocity over the streamwise and spanwise directions for a given cross-stream posi- 

tion. The ("direct") wake halfwidth, 6, is then calculated by finding the maximum 

mean velocity for a given time in the simulation and taking half the width between 

outermost crossings of the mean velocity profile with the half maximum velocity 

point. 

Since many of the flows to be presented develop non-Gaussian mean profiles, 

primarily due to the limited number of long wavelength modes available over which 

to average, a second, integral measure will also be presented. This integral halfwidth, 

h, is defined as jii 

/h2(/£Au<k2)
5 

1     V 2TT   /+* Au*dx2 
K     ' 

where Au is the mean (streamwise) velocity defect profile. The integral halfwidth 

hi has been formulated such that for a Gaussian velocity defect profile b{ = b. Since 

the initial velocity profiles are all Gaussian, bi(t = 0) = bo = 1.0. 
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Figure 3.17: Square of normalized wake halfwidth versus normalized time for Re = 
346 wakes with various disturbance wavelengths, o: 346(0)^. O: 346(0)^|. □: 
346(0)^. (a) Direct halfwidth, b. (b) Integral halfwidth b{. 
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3.4.1    Effect of Disturbance Wavelength 

Similarity arguments applied to the temporally developing plane wake, where the 

momentum per unit streamwise length is assumed to be the only important governing 

parameter, lead to the conclusion that the far wake should grow asymptotically like 

ti. Therefore it is convenient to use plots of the square of the wake halfwidth, b2 

or 6?, versus time, t, to study the growth of the mean flow. In these coordinates, 

b ~ £2 or b{ ~ iä growth will appear as a straight line. 

As a reference, the streamwise fundamental wavelength, as calculated from linear 

stability theory, is Lf = 7.85. The halfwidth b is therefore equal to the halflength 

of the computational domain when b2 = 15.4 for the fundamental only case, b2 — 

61.7 for the cases with subharmonic disturbances, and b2 = 246.7 for the cases 

with sub-subharmonic disturbances. When b2 approaches these values it is likely 

that the streamwise confinement imposed by the computational box will be become 

very significant. (Note: these values will also hold for the later three-dimensional 

computations). 

Figure 3.17 shows plots of the square of the wake halfwidths versus time for 

three wakes with Re^ = 346 started from initial fields containing a fundamental, 

a fundamental and a subharmonic, and a fundamental, a subharmonic, and a sub- 

subharmonic respectively. The circles correspond to the simulation that appears in 

Figure 3.2 (346(0)^*), the diamonds to the simulation in Figure 3.4 (346(0)^), and 

the squares to the simulation in Figure 3.10 (346(0)goo )• 

As discussed above, the wakes go through three distinct stages of evolution. Up 

to a time of approximately t = 30, which is the linear growth regime, the flow is 

laminar with exponentially growing sinusoidal disturbances. After a time of t = 30, 

the flow enters a nonlinear growth regime where the fundamental disturbance grows 

rapidly and the wake spreads quickly. At a time of approximately t = 50 the wake 
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width peaks as the fundamental begins to saturate and the vorticity field rolls up to 

form the Karrnan vortex street. As the vortex street forms, the rollers relax slightly 

toward the wake centerline and the wake halfwidth drops. 

Up to a time of t = 90, the growth of the wakes shown (and indeed all of the two- 

dimensional wakes studied) is clearly dominated by the evolution of the fundamental 

disturbance. After a time of t = 100, however, the longer wavelength disturbances 

become important. After t = 100, the simulation with only the fundamental distur- 

bance (346(0)g**) settles down to a uniform vortex street which spreads only slowly 

through viscous diffusion. The small oscillations in wake width at late time are due 

to the vortices positioning themselves into an asymptotically stable configuration, 

and are therefore less pronounced in the plot of the integral halfwidth. 

The sharp increase in wake width at a time of t = 105 for the simulations with the 

longer wavelength (subharmonic, 346(0)g£, and sub-subharmonic, 346(0)^) distur- 

bances corresponds to the growth of the subharmonic disturbance, which results in 

the initial pairing of the vortices on the bottom side of the wake (Figures 3.4c,d). 

The wake width then peaks as the bottom rollers finish pairing and force one of the 

top rollers upwards (Figures 3.4e). As the wake approaches a subharmonic vortex 

street configuration the rollers again settle back toward the centerline and the wake 

width decreases. 

There is very little difference in the evolution of the wake with only the subhar- 

monic and the wake with the addition of a sub-subharmonic disturbance. Up to the 

time simulated, the sub-subharmonic does not play a significant role. For a very 

long simulation, however, it is reasonable to expect that the sub-subharmonic would 

eventually lead to a second pairing of the vortex street. The effect of the sub-sub- 

harmonic are more evident in the plots of the integral halfwidth at late times, but 

the difference is still not significant. 
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3.4.2 Effect of Disturbance Phase 

Figure 3.18 shows plots of the wake halfwidths versus time for the three simulations 

with Reb = 346 which were initiated with a fundamental and a subharmonic dis- 

turbance. These are the same wakes that appear in the vorticity contour plots in 

Figures 3.4, 3.5, and 3.6. As one would expect after examining the vorticity contour 

plots, the phasing of the subharmonic has a very strong impact on the evolution of 

the mean width. 

The two wakes with subharmonic phasing such that the rollers pair on one side 

and then capture a roller from the other side (346(0)g££ and 346(0)g|*) have sig- 

nificantly greater maximum widths than the wake that pairs on both sides simul- 

taneously. The point of maximum width for all of the wakes occurs in the middle 

of the pairing process, before the original rollers have fully combined. In the wakes 

that pair only on one side, the pairing process pushes one of the rollers on the other 

side of the wake away from the centerline. This serves to sharply increase the mean 

halfwidth of the wake. After the pairing rollers have completed their agglomeration, 

the roller that was pushed out is drawn back toward the centerline, decreasing the 

halfwidth again. In the wake which pairs on both sides simultaneously, the rollers 

on both sides of the wake stay close to the centerline, and the width peaks only 

slightly. 

3.4.3 Effect of Reynolds Number 

Figures 3.19, 3.20, 3.21, and 3.22 show plots of the square of the halfwidths versus 

time for wakes with identical initial disturbances but with different Reynolds num- 

bers. The wake with the lowest Reynolds number shown is 69(0)^ (open diamonds 

in Figure 3.19). At this Reynolds number, the wake never rolls up. Although there 

is some nonlinear growth of the disturbances at early times (as evidenced by the 
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Figure 3.19: Square of normalized wake halfwidth versus normalized time for 
(?)(0)oH wakes (two-dimensional fundamental with various Reynolds numbers). O: 
69(0)K- D: H9(0)S- 0: 346(0)^. A: 692(0& V: 1384(0)^. x: 2768(0)-*. 
(a) Direct halfwidth b. (b) Integral halfwidth &;. 
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Figure 3.20: Square of normalized wake halfwidth versus normalized time for 
(?}(0)oo^ wakes (two-dimensional fundamental and subharmonic with various 
Reynolds numbers). D: 119(0)^. o: 346(0)^. A: 692(0)^. V= 1384(0)g£. 
(a) Direct halfwidth b. (b) Integral halfwidth b{. 
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Figure 3.21: Square of normalized wake halfwidth versus normalized time for 
(?)(0)of.* wakes (two-dimensional fundamental and subharmonic at | with various 

Reynolds numbers). D: 119(0)5?*. 0: 346(0)*?*. A: 692(0)*?*. y: 1384(0)5?*. (a) 
4 4 4 4 

Direct halfwidth b. (b) Integral halfwidth 6j. 
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Figure 3.22: Square of normalized wake halfwidth versus normalized time for 
(?)(0)of^ wakes (two-dimensional fundamental and subharmonic at | with various 

Reynolds numbers). D: 119(0)g|*. o: 346(0)g|*. A: 692(0)g|%. V: 1384(0)g|*. (a) 

Direct halfwidth b. (b) Integral halfwidth &,-. 
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Figure 3.23: Comparison of mean velocity profiles for (692)(0)g^ and (1384)(0)gg£ 
wakes (two-dimensional fundamental and subharmonic at 0). A: 692(0)^, t = 
199.1. V: 1384(0)go£, t = 208.1. (Symbols correspond to those in figure 3.20). 
Arrows indicate locations for measurement of "direct" halfwidths. 

small hump in the growth curves), the growth of this wake is due almost entirely to 

(rather rapid) viscous diffusion. 

At a somewhat higher Reynolds number (119(0)§£, 119(0)§£, 119(0)g|%, and 

119(0)g£*, all shown as open squares in Figures 3.19, 3.20, 3.21, and 3.22), the 

wakes roll up to form vortex streets. Although pairing does occur where a subhar- 

monic disturbance is present, the late time growth of all the wakes quickly become 

dominated by diffusion. 

As the Reynolds number increases further, some measure of Reynolds number 

independence begins to appear in the growth of the mean flow. This is particularly 

true for the (?)(0)££ wakes (Figure 3.19). The growth curves for the Reb = 346, 

692, 1384, and 2768 wakes lie almost exactly atop one another. The only noticeable 

difference is that the initial wake rollup occurs slightly earlier at higher Reynolds 

numbers. 
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For the wakes that undergo pairing (Figures 3.20, 3.21, and 3.22) the case for 

Reynolds number independence is somewhat weaker. The growth seems to be inde- 

pendent of Reynolds number up to approximately midway through the pairing of 

the rollers, at a point where the rollers are still recognizable as separate structures. 

Beyond this point the growth of the halfwidth appears to become dependent on 

viscosity again. 

A large part of the variation in the "direct" halfwidth 6, as compared to the 

integral halfwidth &;, is due to the sensitivity of the measure to the shape of the 

mean velocity profile. The "direct" halfwidth is simply taken as half the width 

between the two outermost points where the mean streamwise velocity is at the half 

maximum velocity defect level. If the mean defect velocity profile is non-Gaussian, 

and in particular if it has "shoulders" or multiple peaks, then large variations in 

the measured halfwidth can appear between flows that look very similar in terms 

of vorticity distribution. This is an inherent shortcoming of the "direct" halfwidth 

measure b which becomes particularly acute in cases such as this where the mean 

profiles can be far from Gaussian. 

This is illustrated by Figure 3.23, which shows mean streamwise velocity profiles 

for the simulations that are presented in Figures 3.13c and 3.13d. The vorticity 

fields of these flows appear very similar, but due to the way the large scale structures 

have arranged themselves, they produce very different mean profiles. At the lower 

Reynolds number, the rollers are more scattered and diffuse, which results in a broad, 

flattened mean velocity profile. At the higher Reynolds number, however, the fact 

that the rollers are compact, and that the top roller has been pulled further toward 

the bottom of the wake produces a mean profile with a narrow, intense peak. Though 

the vorticity in both wakes has spread out over approximately the same spanwise 

extent (which is another possible measure of the width), the "direct" halfwidth b 

(arrows) is very different between the two cases. 
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As noted above, the difference in the integral halfwidth, &;, is much smaller than 

for the "direct" halfwidth b. There is, however, still a significant difference in the 

widths of the 692(0)^^ and 1384(0)^ wakes (A and y in Figure 3.20b respectively). 

The higher Reynolds number 1384(0)gof wake is significantly more compact than 

the lower Reynolds number flows. This is due to the fact that at this particular 

subharmonic phasing, one side the wake develops a single region of concentrated 

vorticity, while the vorticity in the other side of the wake remains in two weaker 

regions. The difference in the relative strength of the regions of vorticity that form 

allow the single strong region to capture one of both of the weaker regions from the 

opposite side of the wake. At the highest Reynolds number shown, 1384(0)go£, tne 

very strong concentrated vorticity region at the bottom of the wake captures both 

of the weaker vorticity concentrations at the top of the wake, resulting in a very 

compact configuration. At the lower Reynolds numbers shown just one of the upper 

vorticity concentrations is captured, resulting in a wider wake (see Figure 3.13 on 

Page 81). In contrast, the other two subharmonic phasings examined result in wakes 

in which the vorticity concentrations that develop on opposite sides of the wake are 

more balanced in strength. Neither side of the wake can capture all of the significant 

vorticity concentrations from the other side of the wake, independent of the wake 

Reynolds number (see Figures 3.14 and 3.15 on Pages 82 and 83). 
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SECTION 4 

THREE-DIMENSIONAL SIMULATIONS 

4.1    Motivation 

To explore the effects of initial conditions on the development of the three-dimen- 

sional incompressible plane wake, a set of three-dimensional simulations has been 

run using various initial conditions. The effects of disturbance wavelength, phasing, 

and wake Reynolds number are examined in this section. 

4.2    Simulation Parameters 

4.2.1    Three-dimensional Forcing 

As discussed in Section 2.7, the initial conditions for the three-dimensional simu- 

lations were composed of a Gaussian mean streamwise velocity profile with sets of 

small amplitude periodic disturbances superimposed. Simulations were performed at 

Reynolds numbers based on initial halfwidth and defect velocity of between 69 and 

2768. The majority of wakes simulated were at a Reynolds number of Rt^ = 346. 

Based on the results of the two-dimensional simulations presented in 3, this should 

be a sufficiently high Reynolds number to capture the main effects of the variety 

of initial disturbances on the large scale development of the wake. Simulations at 

the highest Reynolds numbers, which are much more computationally demanding, 

were run for only a few select sets of initial disturbances in order to examine the 
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transition to turbulence. Table H.2 in Appendix H gives a summary of all of the 

three-dimensional simulations that have been performed. 

4.3    Evolution of the Three-dimensional Wake 

Figure 4.1 shows perspective views of three-dimensional iso-enstrophy density con- 

tours at four times in the development of the 346(60)g°£ wake (two-dimensional 

fundamental disturbance and a pair of 60° oblique disturbances at the subharmonic 

wavelength). The freestream flow direction is from left to right. The contour level 

was chosen to be \u\ = 0.4. This corresponds to approximately 60% of the initial 

mean wake defect velocity divided by the initial wake halfwidth, which serves as a 

rough measure of the mean gradient in the initial flow. 

The development of this wake is typical of the wakes initiated with a two-dim- 

ensional fundamental disturbance and a pair of 60° oblique disturbances at the sub- 

harmonic wavelength. The initial development is primarily two-dimensional, with 

the fundamental (Karman) mode growing most quickly as predicted by linear theory. 

The flow develops well defined spanwise rollers with relatively weak streamwise struc- 

tures stretching between rollers on the same side of the wake (Figure 4.1b). Once the 

rollers are established, the three dimensional disturbances grow rapidly in strength 

under the influence of the resulting straining field. (Figure 4.1b,c). As the stream- 

wise structures become more intense, they begin to distort the rollers, breaking up 

their spanwise coherence (Figure 4.1c). Eventually, the streamwise structures, both 

the original structures and ones which are the result of the distortion of the span- 

wise rollers, become the dominant features in the flow (Figure 4.Id). Note that as 

the wake spreads with time, the maximum vorticity due to the mean flow drops, 

so the magnitude of a fixed level of vorticity relative to the gradients of the mean 

flow becomes substantially larger. The structures which appear in Figure 4.Id are 
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(a) 

(b) 

Figure 4.1: Iso-enstrophy density contour for 346(60)Q°^ wake (two-dimensional 
fundamental plus three-dimensional subharmonic). Contour level is \u\ = 0.4. 
(a) t = 22.8. (b) t = 52.8. (c) t = 102.7. (d) t = 204.8. (Cont.) 
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(a) 

Figure 4.1: Iso-enstrophy density contour for 346(60)g°£ wake (two-dimensional 
fundamental plus three-dimensional subharmonic). Contour level is \u\ = 0.4. 
(a) t = 22.8. (b) t = 52.8. (c) t = 102.7. (d) t = 204.8. (Cont.) 
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00 

Figure 4.1: Iso-enstrophy density contour for 346(60)^ wake (two-dimensional 
fundamental plus three-dimensional subharmonic). Contour level is |u;| = 0.4. 
(a) t = 22.8. (b) t = 52.8. (c) t = 102.7. (d) t = 204.8. 
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Figure 4.2: Iso-enstrophy density contour for 346(60)8^ wake (two-dimensional fun- 
damental plus three-dimensional fundamental), t = 196.9. Contour level is \u\ = 0.2. 

at an intensity level far above the vorticity due to the mean shear. Compared to 

the contour level of \u>\ = 0.4 shown, the mean shear at that late time, based on 

halfwidth and maximum defect velocity, is 0.037, more than an order of magnitude 

lower. 

4.3.1    Effect of Disturbance Wavelength 

In stark contrast to the wake shown in Figure 4.1 is the wake shown in Figure 4.2. 

This is the 346(60)^ wake (which has a two-dimensional fundamental disturbance 

and a pair of oblique disturbances at the fundamental wavelength). The contour 

level here is 0.2, half the level used in Figure 4.1. With these initial conditions, 

strong three-dimensionality fails to develop even by the advanced time shown. The 

streamwise structures are present (the dominant ones can be seen running between 

rollers on the bottom side of the wake at this disturbance phasing), but exist as 

broad flat regions of vorticity, canted to the plane of the wake, as opposed to the 

intense tube-like structures which appear in the 346(60)g°£ wake.   The relatively 
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low circulation of these weak streamwise structures is evidenced by their minimal 

impact on the spanwise rollers. The rollers in the wake in Figure 4.2 are only slightly 

corrugated, whereas at the corresponding time for the 346(60)g°£ wake (Figure 4.1d), 

the spanwise rollers have been entirely overwhelmed by the streamwise structures. 

The effects of the addition of longer wavelength disturbances are illustrated by the 

wakes in Figures 4.3, 4.5, and 4.7. Figure 4.3 shows the results from the 346(60)^ 

simulation. This wake was started from initial conditions similar to those used in 

Figure 4.2, but with the addition of a two-dimensional subharmonic disturbance. 

Again, the evolution is dominated by two-dimensional dynamics, even at the late 

time (t = 202.8) shown. As in the corresponding two-dimensional wake (Figure 3.4), 

the two bottom rollers have paired to form one coherent roller, captured one of the 

top rollers, and drawn it down to the bottom of the wake. Although the three-dim- 

ensional structures are stronger than those found in the 346(60)^ simulation, and 

have a tube-like shape as opposed to a flat shape, they are still substantially weaker 

than those found in the 346(60)g°* simulation. The effect of the moderate strength 

streamwise structures is to break up the spanwise coherence of the captured roller, 

with little impact on the other two (primary) rollers. 

The essential two-dimensionality of this flow is reinforced by the plot in Figure 

4.4. This figure shows a comparison of the evolution of the first few streamwise (two- 

dimensional) mode energies for the three-dimensional wake 346(60)^ (symbols) 

and the corresponding two-dimensional wake 346(60)g£* (lines). Up to a time of 

approximately t = 150 there is no significant difference in the development of the 

mean, two-dimensional fundamental or subharmonic mode energies between the two- 

dimensional and three-dimensional wake. Even at very late times the differences are 

relatively small. The subharmonic mode energy for the three-dimensional wake is 

somewhat lower due to energy being transferred into the three-dimensional modes, 

but the wake dynamics are still essentially those of a two-dimensional wake. 
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Figure 4.3: Iso-enstrophy density contour for 346(60)°^ wake (two-dimensional fun- 
damental and subharmonic plus three-dimensional fundamental), t = 202.8. Con- 
tour level is M = 0.2. 
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Figure 4.4:   Comparison of mean, two-dimensional fundamental, and two-dimen- 
sional subharmonic mode energies versus time for 346(0)og£ (lines) and 346(0)gg£ 
(symbols) wakes.    , o: 0.1 x mean flow energy.    , O: Fundamental mode 
energy. , □: Subharmonic mode energy. 

Figure 4.5 shows an iso-enstrophy density contour for the 346(60)^ simulation, 

where a two-dimensional subharmonic has been added to the initial disturbance field. 

Note that the contour level shown is again \u\ — 0.4. The addition of a two-dimen- 

sional subharmonic disturbance does not have a major impact on the development 

of the streamwise structures as compared to the 346(60)g°^ simulation in Figure 4.1. 

Similar primary streamwise structures exist in both flows, running between rollers 

on the same side of the wake. The main effect of the two-dimensional subharmonic 

disturbance is on the spacing of the rollers, causing the two bottom rollers and one 

of the top rollers to cluster into a tight group and begin to pair as was observed in 

the corresponding two-dimensional wake in Figure 3.4d and the weakly three-dim- 

ensional wake in Figure 4.3. In this wake, however, the strong streamwise structures 

inhibit the pairing process by distorting the rollers. 

This is more easily seen by examining the evolution of the streamwise mode ener- 

gies. Figure 4.6 shows a comparison of the disturbance energies for the two-dimen- 
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Figure 4.5: Iso-enstrophy density contour for 346(60)g£* wake (two-dimensional fun- 
damental and subharmonic plus three-dimensional subharmonic). t = 96.7. Contour 
level is M = 0.4. 
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Figure 4.6: Comparison of mean, two-dimensional fundamental, and two-dimen- 
sional subharmonic mode energies versus time for 346(0)gg£ (lines) and 346(0)gg* 
(symbols) wakes.    , o: 0.1 x mean flow energy.    , O: Fundamental mode 
energy.   , □: Subharmonic mode energy. 

sional 346(60)gJ* wake (lines) and the three-dimensional 346(60);$* wake (symbols). 

Note that both the fundamental and subharmonic disturbances in the three-dimen- 

sional wake peak earlier and at a lower energy than in the corresponding two-dim- 

ensional wake. Furthermore, the late time energy of the subharmonic disturbance 

is significantly lower in the three-dimensional wake. This is a result of the three- 

dimensional motions drawing energy out of the long wavelength two-dimensional 

modes. 

Figure 4.7 shows iso-enstrophy density contours for the 346(60)g°o wake, which 

has the longest wavelength disturbances studied. Note that the streamwise extent 

of the field shown in Figure 4.7 is twice that of the fields in the previous figures (four 

fundamental wavelengths long instead of two). The effect of the additional two-dim- 

ensional sub-subharmonic disturbance is rather minimal up to the time shown. It 

has caused the sets of paired rollers to be offset slightly in the cross-stream direction, 

but there is no indication that a second pairing is likely. This conclusion is supported 
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Figure 4.7: Iso-enstrophy density contour for 346(60)$$ wa^e (two-dimensional fun- 
damental, subharmonic, and sub-subharmonic plus three-dimensional subharmonic 
and sub-subharmonic). t = 103.2. Contour level is |w| = 0.4. 
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Figure 4.8: Mean and two-dimensional fundamental, two-dimensional subharmonic, 
and two-dimensional sub-subharmonic mode energies versus time for 346(0)g°o wake. 
 : 0.1 x mean flow energy. : Fundamental mode energy. : Subhar- 
monic mode energy.    : Sub-subharmonic mode energy. 
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Figure 4.9: Iso-enstrophy density contour for 346(60)0^ wake (two-dimensional 
fundamental plus three-dimensional subharmonic at |). t = 96.5. Contour level is 

0.4. \LO 

by figure 4.8 which shows the evolution of the energies of the first few streamwise 

disturbance modes. Note that the sub-subharmonic disturbance (dotted line) is the 

weakest of the disturbance modes shows, and is decaying rapidly at late times. Since 

the sub-subharmonic mode is required for a second pairing to occur, such a paring 

is impossible in the time frame observed. 

At late times the spanwise structures are very similar to the structures in the wake 

in Figure 4.5. The effect the addition of the oblique sub-subharmonic disturbance 

is to impart a spanwise variation in the strengths of both the streamwise structures 

and the spanwise rollers. This small increase in the complexity of the overall flow 

has little impact on the development of the wake. 
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Figure 4.10: Iso-enstrophy density contour for 346(60)^f wake (two-dimensional 
fundamental plus three-dimensional fundamental at f). t = 197.0. Contour level is 
U = 0.2. 

— XX 
Figure 4.11: Iso-enstrophy density contour for 346(60)o

2
O:r wake (two-dimensional 

fundamental and subharmonic plus three-dimensional fundamental at f). * = 192.6. 
Contour level is Iwl = 0.2. 

113 



Figure 4.12: Iso-enstrophy density contour for 346(60)Q0
2
/ wake (two-dimensional 

fundamental and subharmonic plus three-dimensional subharmonic at |). t = 97.3. 
Contour level is la;I = 0.4. 

4.3.2     Effect of Disturbance Phase 

Figures 4.9, 4.10, 4.11, and 4.12 illustrate the effects of phasing of the oblique distur- 

bance on the structure of the three-dimensional wakes discussed above. The general 

effect is to decrease the strength of the streamwise structures on one side of the wake 

and increase the strength of the streamwise structures on the other. For the wakes 

initiated with an oblique disturbance at the fundamental wavelength (Figures 4.10 

and 4.2, and Figures 4.11 and 4.3) this results in the already weak streamwise struc- 

tures on the bottom of the wake dropping in intensity below the contour level shown 

in favor of streamwise structures on the top of the wake, which remain too weak 

to appear. For the wakes initiated with a oblique disturbance at the subharmonic 

wavelength (Figures 4.9 and 4.1, and figures 4.12 and 4.5) this results in a balancing 

of the strengths of the streamwise structures, which previously favored the top of 

the wake. 
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(a) 

(b) 

Figure 4.13: Iso-enstrophy density contours for (?)(60)g^ wakes (two-dimension- 
al fundamental plus three-dimensional subharmonic) at various Reynolds numbers, 
(a) 119(60)g°*, t = 97.9.    M  =  0.2.    (b) 346(60)^, t =  102.7.    |w|  =  0.4. 

t = 101.2.    \u>\ = 0.8.   (d) 1384(60)^, t = 101.5.    |w| = 1.6. 
t = 102.4. \Lü\ = 2.4. (Cont.) 
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(a) 

Figure 4.13: Iso-enstrophy density contours for (?)(60)g^ wakes (two-dimension- 
al fundamental plus three-dimensional subharmonic) at various Reynolds numbers, 
(a) 119(60)32*, t = 97.9. \u>\ = 0.2. (b) 346(60)3^, t = 102.7. M = 0.4. 
(c) 692(60)g°*, * = 101.2. M = 0.8. (d) 1384(60)^, t = 101.5. |w| = 1.6. 
(e) 2768(60)g* t = 102.4. \u\ = 2.4. (Cont.) 
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(b) 

Figure 4.13: Iso-enstrophy density contours for (?)(60)g°£ wakes (two-dimension- 
al fundamental plus three-dimensional subharmonic) at various Reynolds numbers, 
(a) 119(60)^, t = 97.9. M = 0.2. (b) 346(60)g°*, t = 102.7. M = 0.4. 
(c) 692(60)^, t = 101.2.    M = 0.8.    (d) 1384(60)^?. t = 101.5.    M = 1.6. 

(e) 2768(60)^*, * = l^A- M = 2A- (Cont-) 
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Figure 4.13: Iso-enstrophy density contours for (?)(60)g°^ wakes (two-dimension- 
al fundamental plus three-dimensional subharmonic) at various Reynolds numbers, 
(a) 119(60)g2*, * = 97.9. \u\ = 0.2. (b) 346(60)g^, t = 102.7. \w\ = 0.4. 
(c) 692(60)££, t = 101.2. |w| = 0.8. (d) 1384(60)^*, t = 101.5. M = 1.6. 
(e) 2768(60)52«, * = ^2A- M = 2-4- (Cont.) 
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4.3.3    Effect of Reynolds Number 

Figure 4.13 shows a series of iso-enstrophy density contours for (?)(60)g°* wakes all 

at approximately the same time, but with progressively increasing Reynolds number. 

Note that as the Reynolds number increases, the contour level shown also increases. 

Even at a rather low Reynolds number (the 119(60)^ wake in Figure 4.13a), 

the streamwise structures which arise from the oblique subharmonic disturbance 

are quite strong and dynamically important. Though they do not overwhelm the 

spanwise rollers, they do distort the rollers significantly. 

As the Reynolds number increases, the relative strengths of the streamwise struc- 

tures also increase, the spanwise rollers become more distorted, and finer flow scales 

appear. Even in the highest Reynolds number wake simulated (the 2768(60)g°* wake 

in Figure 4.13e), the influence of the oblique subharmonic is apparent. Very intense 

fine scale motions occur at locations where the coherent streamwise structures appear 

in the lower Reynolds number flows. This is an indication that the generation of 

small scales in the wake is linked the very intense straining fields created by the 

streamwise structures. 

Though the early development of all the wakes calculated is similar, the devel- 

opment of significant strong three-dimensionality does not occur in the absence of 

the oblique subharmonic. Figure 4.14 shows an iso-enstrophy density contour for 

the 1384(60)o^ wake. The streamwise structures are evident, and, as evidenced 

by the visible corrugation in the spanwise rollers, have a somewhat greater impact 

on the flow dynamics than in the corresponding lower Reynolds number (?}(60)Q^ 

wake presented previously. However, the three-dimensional motions are still very 

weak, and the wake remains nearly two dimensional. Similar results are found for 

computations started from the same set of initial disturbances, but with different 

disturbance phasings. 
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Figure 4.14: Iso-enstrophy density contour for 1384(60)££* wake (two-dimension- 
al fundamental plus three-dimensional fundamental), t = 100.2. Contour level is 
Iwl = 0.2. 
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This result differs markedly from the compressible wake computed by Chen et 

al. [10], which showed strong three-dimensional development for certain disturbance 

phases and only weak three-dimensional development for others. It is unclear why 

this difference exists. Chen et al. attributed the sensitivity to three-dimensional 

disturbance phase in the compressible wake to the fact that at certain phasings 

significant amounts of vorticity from the three-dimensional mode resides in the high 

strain-rate regions between the spanwise rollers where it can be amplified through 

stretching. Other phases are such that most of the vorticity from the three-dimen- 

sional mode gets wrapped into the relative low strain-rate rollers, where it is only 

weakly amplified. If this were the only process occurring the same results should hold 

for the incompressible wake. A more careful comparison of the respective datasets 

needs to made before the reason for the observed difference can be determined. 

At this point it is prudent to check that the wake simulations presented, par- 

ticularly the simulations of the higher Reynolds number wakes, are well resolved. 

To do this it should be sufficient to demonstrate that the most extreme case, the 

Reb = 2768 wake, is adequately resolved. This was accomplished by calculating the 

Taylor microscales as was done for the test case in section 2.8.3 (see Appendix A 

for definitions of the microscales used). Analysis of the 2768(60)g£* wake yielded 

a minimum (as a function of x2) Taylor microscales of AT = 0.26 and An = 0.35 

respectively. The least well resolved direction in this flow is the cross-stream, with 

a grid size of Ax2 = 0.085 which translates to over three grid cells per microscale 

length. This resolution is adequate. 

This conclusion is reinforced by by examining the energy spectra of the simulated 

wakes. Figure 4.15a shows the energy spectra for the 346(60)g°£ wake and figure 

4.15b shows the energy spectra for the 2768(60)g°£ wake. The 2768(60)^ wake is 

the most demanding of the simulations performed. Since the spectra of both wakes 
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Figure 4.15: Streamwise energy spectra for 346(60)g°* and 2768(60)g£* wakes.   : 
E(h).   (a) 346(60)§£*, t = 102.7.   (b) 2768(60)^, t = 102.4.   Arrows indicate 
minimum grid wavenumber. 
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show large, clean dropoff of their spectra at high wavermmbers it is clear that both 

simulations are sufficiently resolved. 

4.4    Growth of the Mean Flow 

Wygnanski, Champagne, & Marasli [58] (hereafter referred to as WCM) studied a 

set of small defect turbulent plane wakes created with a variety of wake generators. 

The generators were carefully designed such that the momentum thickness, 6$, was 

constant for all of the experiments. The Reynolds number for the various wakes they 

studied, based on freestream velocity and momentum thickness, ranged between 640 

and 3220 (which, assuming a Gaussian mean initial profile, corresponds to Reynolds 

numbers based on wake halfwidth and centerline velocity of between Re^ — 589 and 

Reb = 2962, the high end of the computational range studied here.) They found 

that the far wake growth rates followed 

where x is the stream wise coordinate and XQ is a virtual origin. The coefficient Ao 

was found to vary depending on the particular wake generator used. The limiting 

values for Ao that they observed were 0.270 for a solid strip set perpendicular to the 

flow direction, and 0.382 for a flat plate with a trailing edge flap which was oscillated 

at the frequency of the Karman mode. 

In order to compare with these experiments, straight dotted lines indicating the 

upper and lower bounds for the growth rates observed by WCM will be plotted 

in the following figures. These lines have been transformed into the appropriate 

computational variables using x — XQ = Uo(t — t0). Note that these lines have not 

been shifted to account for the virtual origins for the various flows. Only the slopes 

of the lines are significant. 
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Figure 4.16: Square of normalized wake halfwidth versus normalized time for 
Re = 346 wakes with various combinations of initial disturbance wavelengths, o: 
346(60fc O: 346(60)g£. □ : 346(60)°^. A: 346(60)go°*. V: 346(60)§0°°. (a) Direct 
halfwidth b. (b) Integral halfwidth &;. 
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4.4.1    Effect of Disturbance Wavelength 

Figure 4.16 shows comparisons of the square of the wake halfwidths, b2 and b2, versus 

nondimensional time, i, for computations with a Reynolds number of Reb = 346 and 

various combinations of initial disturbances. All the disturbance phases are zero. 

Up to a time of approximately t = 70, the growth rate of all the wakes shown is 

dominated by the initial two-dimensional development of the Karrnan vortex street. 

The presence of disturbances other than the two-dimensional fundamental has little 

impact. 

Between a time of t = 70 and t = 200 the growth rate becomes highly dependent 

on the particular choice of initial disturbance. The most significant factor is the 

existence of a two-dimensional subharmonic disturbance. The wakes with the two- 

dimensional subharmonic (346(60fc 346(60)$*, and 346(60)ggg) undergo a period 

of rapid spreading around a time of t - 100 which corresponds to the pairing of 

the spanwise rollers, while the wakes with only the two-dimensional fundamental 

disturbance grow more slowly. 

The late time growth rate, after a time of approximately t = 200 is determined by 

the wavelengths of the oblique disturbances. The wakes initiated with a subharmonic 

oblique disturbance, which develop strong three-dimensional motions, maintain a 

growth rate similar to the upper range observed by WCM. The wakes initiated with 

only a fundamental wavelength oblique disturbance, which are dominated by two- 

dimensional dynamics, have a late time growth rate well below the experimentally 

observed level. The late time growth of these wakes is primarily due to the viscous 

diffusion of the coherent vortex street. 
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Figure 4.17: Square of normalized wake halfwidth versus normalized time for 
346(60)^^ wakes (two-dimensional fundamental plus three-dimensional funda- 

mental at various phases),  o: 346(60)°**.  O: 346(60)0*s7.   D- 346(60)t-    : 
Corresponding two-dimensional wake, 346(0)***. (a) Direct halfwidth b. (b) Integral 
halfwidth h. 
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4.4.2    Effect of Disturbance Phasing 

Figure 4.17 shows plots of the square of the wake halfwidths versus nondimensional 

time for a set of three-dimensional simulation runs started from the 346(60)o^£ dis- 

turbance condition (a two-dimensional fundamental and a three-dimensional oblique 

fundamental at 60°) overlayed on the results from the corresponding two-dimensional 

simulation (346(0)^). It is readily apparent that the growth of these wakes is dom- 

inated by two-dimensional dynamics. This is not surprising given the fact that, as 

discussed previously, this choice of initial disturbances does not lead to development 

of strong three-dimensionality. As a result, the phase of the oblique disturbance has 

no significant effect on the growth of the mean flow. The late time growth rates for 

these wakes fall well below the levels observed by WCM. 

Figures 4.18, 4.19, and 4.20 show plots of the square of the wake halfwidths versus 

nondimensional time for a set of three-dimensional simulation runs started from the 

346(60)ß/iw disturbance condition (a two-dimensional fundamental, a two-dimen- 

sional subharmonic, and a three-dimensional oblique fundamental at 60°). Here 

again the flow is dynamically two-dimensional and therefore the growth of the mean 

flow is very insensitive to the phasing of the three-dimensional fundamental distur- 

bance. The phasing of the two-dimensional subharmonic determines the develop- 

ment of the mean flow almost entirely. The small deviations from the corresponding 

two-dimensional wakes at late times are due to the (relatively weak) three-dimen- 

sional structures which develop during the pairing of the spanwise rollers. However, 

these structures never dominate the flow dynamics. Again the late time growth of 

these flows is well below the range observed by WCM. 

Figure 4.21 shows plots of the square of the wake halfwidths versus non-dim- 

ensional time for a set of three-dimensional simulation runs started from the 

346(60)o^    disturbance condition (a two-dimensional fundamental and a three- 
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Figure 4.18: Square of normalized wake halfwidth versus normalized time for 
346(60)^teS wakes (two-dimensional fundamental and two-dimensional subhar- 
monic plus three-dimensional fundamental at various phases),   o:  346(60)QO£-   <>: 

346(60)|,7- n- 346(60)j£\   : Corresponding two-dimensional wake, 346(0)gg£. 
(a) Direct halfwidth b. (b) Integral halfwidth &;. 
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Figure 4.19:    Square of normalized wake halfwidth versus normalized time for 
346(60)0!^ wakes (two-dimensional fundamental and two-dimensional subharmonic 

4 

at I plus three-dimensional fundamental at various phases).   0:   346(60)02?^.   O: 

346(60) J**. □: 346(60)o
f^.   : Corresponding two-dimensional wake, 346(0)gf XXX 

X' 

(a) Direct halfwidth b. (b) Integral halfwidth &;. 
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Figure 4.20:    Square of normalized wake halfwidth versus normalized time for 
346(60)o2T^x wakes (two-dimensional fundamental and two-dimensional subharmonic 

4 

at | plus three-dimensional fundamental at various phases),   o:   S4:Q(60)QKX-   O: 
_ '7**7* ^— 3*3* i /      \ 

346(60)021^.. □: 346(60)021^.   : Corresponding two-dimensional wake, 346(0) 

(a) Direct halfwidth b. (b) Integral halfwidth &;. 
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Figure 4.21:    Square of normalized wake halfwidth versus normalized time for 
346(60)o£:^ wakes (two-dimensional fundamental plus three-dimensional subhar- 

2" 
Oxx monic at various phases),   o: 346(60)g°*.  O: 346(60fc*.   □:  346(60) 

Corresponding two-dimensional wake, 346(0)g££.   (a) Direct halfwidth b.  (b) Inte- 
gral halfwidth b{. 
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Figure 4.22:   Mean velocity profiles for 346(60)§°* and 346(60)^ wakes.     : 

692(60)5°^, t = 288.2.    : 692(60)S|f, * = 292.1.  Arrows indicate locations for 
measurement of "direct" halfwidths. 

dimensional oblique subharmonic at 60°). In contrast to the wakes with oblique 

disturbances at the fundamental wavelength, the late time growth of these wakes 

is substantially different from the corresponding two-dimensional case. The initial 

growth is still dominated by two-dimensional dynamics, but by a time of t = 125 

three-dimensional processes clearly begin to take over, as evidenced by the substan- 

tial deviation from the two-dimensional growth curve. 

The effect of the phasing of the three-dimensional subharmonic on either 

half width measure is minimal up to a time of t = 200. After a time of t = 200, 

however, the "direct" halfwidth measure shows what appears to be a strong phase 

dependence, the apparent dependence on phase is due to the fact that the mean 

flow profiles for these wakes are highly non-Gaussian, with several local maxima. 

The oblique disturbance phase has an impact on the details of the shape of the mean 

profile, as well as an effect on the maximum mean velocity. This has a large impact 
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on the calculation of the "direct" halfwidth, 6, even though the vorticity in the flows 

has spread over a similar extent. This is illustrated by the mean ux velocity profiles 

shown in Figure 4.22, which correspond to the o and o lines in Figure 4.21 at a time 

of approximately t = 300. The relative small differences in profile height and shape 

lead to a large difference in "direct" halfwidth b (see arrows). 

The actual effect of disturbance phase is relatively small as can be concluded 

from the plot of the integral halfwidth k. What is most significant is that the late 

time growth rates for all of these wakes are similar and within the range observed by 

WCM. The presence of a three-dimensional subharmonic allows growth that is in line 

with natural wakes. This does not occur in the wakes that have a three-dimensional 

fundamental only. 

Figures 4.23, 4.24, and 4.25 show the square of halfwidths versus time for the 

346(60)oj^ wakes. Again, the oblique disturbance phasing has only a small impact 

on the growth of the mean flow. Though the magnitude of the late time width 

varies somewhat with the phasing of the oblique disturbances, the growth rate is not 

significantly impacted. Note also that so long as a three-dimensional subharmonic 

is present, the late time growth rate of the three-dimensional wakes varies little 

with the phase of the two-dimensional subharmonic disturbance, or for that matter, 

with the presence or absence of the two-dimensional subharmonic (compare with 

the 346(60)o£>x wakes in Figure 4.21). The late time growth rates are again similar, 

though in some cases slightly above, the bounds observed by WCM. 

4.4.3    Effect of Reynolds Number 

Figure 4.26 shows a comparison of the square of the wake "direct" halfwidth versus 

time for a set of computations all initiated with the (?)(60)g°^ disturbance condition, 

but at different Reynolds numbers. Figure 4.27 are similar plots of the integral 

halfwidth. At early times (Figures 4.26b and 4.27b), the low Reynolds number wake 
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Figure 4.23: Square of normalized wake halfwidth versus normalized time for 
346(60)ote wakes (two-dimensional fundamental and two-dimensional subharmonic 
plus  three-dimensional  subharmonic  at  various  phases).      o:    346(60)o°£.     <>: 

346(60)^*- D: 346(60)^*-   : Corresponding two-dimensional wake, 346(0)^*. 
(a) Direct halfwidth b. (b) Integral halfwidth &;. 
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Figure 4.24:    Square of normalized wake halfwidth versus normalized time for 
346(60)Q2L^  wakes (two-dimensional fundamental and two-dimensional subharmonic 

4 

at | plus three-dimensional subharmonic at various phases),   o:   346(60)^.   O: 

346(600:. □: 346(600;;. : Corresponding two-dimensional wake, 346(0) 

(a) Direct halfwidth b. (b) Integral halfwidth &; 
4 
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Figure 4.25: Square of normalized wake halfwidth versus normalized time for 
346(60)oi'^ wakes (two-dimensional fundamental and two-dimensional subharmonic 

at ^ plus three-dimensional subharmonic at various phases),   o:  346(Q0)Q°KX-   O: 

346(60)ol^. □: 346(60)ol^.   : Corresponding two-dimensional wake, 346(0)gi*. 

(a) Direct halfwidth b. (b) Integral halfwidth &,-. 
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Figure 4.26: Square of normalized wake direct halfwidth versus normalized time for 
(?)(60)cto? wakes (two-dimensional fundamental plus three-dimensional subharmonic 
with various Reynolds numbers). D: 119(60)5°*. o: 346(60)^. A: 692(60)g°*. v= 
1384(60)^. x: 2768(60)^. (b) is a magnification of the early time region of (a). 
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Figure 4.27: Square of normalized wake integral halfwidth versus normalized time for 
(?)(60)o°^ wakes (two-dimensional fundamental plus three-dimensional subharmonic 
with various Reynolds numbers). D: 119(60)^. o: 346(60)§°*. A: 692(60)g°*. V: 
1384(60)^. x: 2768(60)^. (b) is a magnification of the early time region of (a). 
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rolls up more slowly and peaks in width later than the other wakes. This is due to 

viscous effects. The 346(60)g°£ wake shows a similar, though much less pronounced 

effect. 

From the time the wake rolls up into the initial vortex street until a time of 

approximately t - 150, the wake growth is insensitive to Reynolds number. During 

this period the three-dimensional structures are growing in strength but have not yet 

become the dynamically dominant features in the wakes. After a time of t = 150, 

the growth begins to show some sensitivity to Reynolds number. The three-dim- 

ensional structures in the lowest Reynolds number wake, 119(60)^, are quickly 

diffused by viscosity and and therefore never become strong enough to overwhelm the 

two-dimensional dynamics of the early flow. At higher Reynolds numbers, however, 

coherent three-dimensional structures dominate the late time growth. Thought there 

is some variation in the late time widths of the wakes as the Reynolds number is 

varied, the late time growth rate for all of the higher Reynolds number flows is 

similar. In fact the growth rates of the highest Reynolds number flows are somewhat 

lower than the growth rate for the 346(60)g°£ wake. The reason for this is that 

the 346(60)g°£ wake develops very strong three-dimensional structures that remain 

coherent for long periods. Those organized structures can efficiently work to spread 

the wake. At higher Reynolds numbers the coherent structures are disrupted, though 

not destroyed, by disorganized fine scale motions. The resulting reduced organization 

of the coherent structures slightly reduces the wake growth rate. 

4.5    Comparison with Experiment 

The 119(60)S£* and 346(60)^ wakes in Figures 4.26 and 4.27 has slight undulations 

in the late time growth curve visible in plots of both width measures. This starts 

at a time of approximately 80 with the peak which corresponds to the rollup and 
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Figure 4.28:   Comparison of halfwidth versus downstream distance for 119(60)g°£ 
wake and experiments of Corke, Krull, & Ghassemi [14] (CKG). o:  CKG experi- 

mental data. : CKG curve fit. 119(60)g£. 

saturation of the Kärman mode, and is followed by a period of neutral or negative 

growth, followed by growth again. This cycle of stronger growth followed by weaker 

growth continues as both wakes develop. 

Corke, Krull, & Ghassemi [14] (hereafter referred to as CKG) studied this phe- 

nomenon in a Re = 119 spatially developing wake produced by a symmetric airfoil 

at zero angle of attack. They forced their wake with a two-dimensional disturbance 

at the fundamental frequency and a pair of oblique modes at the subharmonic in a 

manner similar to the computations presented here. They concluded that the fluc- 

tuations in the growth of the wake were due to a parametric resonance between the 

fundamental mode and the oblique subharmonic mode. The two-dimensional mode 

saturates and begins to feed energy into the three-dimensional oblique disturbance 

through a secondary instability mechanism. The oblique mode in turn saturates, 

and the two-dimensional disturbance begins to grow again. 

140 



Figure 4.28 shows a comparison between the direct wake width for the 119(60) xOx 
Oxx 

wake and data from Figure 4 in CKG. The computed flow has been renormal- 

ized to match momentum thickness and shifted to put the virtual origin for the 

computed flow at x = 0. The coordinates were transformed using X/8CKG = 

U0{t - t0) j6computation and (b/8)CKG = (&/'6)computation- This rescaling does not 

account for differences in initial forcing magnitude between the experiment and the 

computation, or for the virtual origin of the experimental wake. Nevertheless, the 

match between the computed flow and the experimental data is quite reasonable. 

4.6    Selected Spectra and Velocity Profiles 

Figure 4.29 shows rescaled streamwise energy spectra (&/ E(ki)) for the velocity 

fields in two of the computed wakes. The data has been plotted in this way in 

order to bring out regions of k^5'3 spectra which are expected in turbulent flows. In 

these coordinates, regions of k^5'3 spectra will appear as horizontal lines. The span- 

wise and cross-stream (E(k2) and E(k3)) spectra are very similar to the streamwise 

spectra and are not shown here. 

Figure 4.29a shows the rescaled streamwise energy spectrum for the moderate 

Reynolds number 346(60)g°£ wake which appears in Figure 4.13b. There is clearly 

no significant inertial (&i 3, horizontal line in the plot) range in this flow. This is 

consistent with the fact that the flow is dominated by large coherent structures and 

has few small scales. This wake can not be considered turbulent. 

Figure 4.29b shows the streamwise energy spectrum for the highest Reynolds 

number wake computed, 2768(60)Q°^. This is the wake which appears in Figure 

4.13b. This flow has a spectrum which is much more consistent with the expected 

spectrum of a turbulent flow. It shows a range in the spectrum that is close to the 

expected k^5'3 law (horizontal line). Since the range of kx over which the spectrum 
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Figure 4.29:   Rescaled streamwise energy spectra for 346(60)Q°* and 2768(60)Q°* 

wakes.    :  k\l3E{k{).   (a) 346(60)^, t = 102.7.   (b) 2768(60)^, t = 102.4. 
Arrows indicate minimum grid wavenumber. 
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goes like A^5/3 is fairly short, the wake can not be considered fully turbulent.   A 

proper classification for this wake is "transitional." 

This "transitional" classification is borne out by the mean streamwise (ui) 

velocity profiles which appear in Figure 4.30. (The symmetry of the initial condi- 

tions is such that the spanwise and cross-stream velocities have zero mean). These 

profiles correspond to the wakes which appear in Figure 4.13. Only for the lowest 

Reynolds number case (119(60)g°* in Figure 4.30a) where no significant three-dim- 

ensionality develops, is the mean profile Gaussian. For all of the higher Reynolds 

number wakes (Figures 4.30b-e) the coherent structures in the flow distort the 

shape of the mean profiles. Specifically, the "lumps" in the profiles that appear 

in the vicinity of x2 = ±5.0 are a result of the strong streamwise structures that 

appear in Figures 4.13b-e. The shape of the profile for the 2768(60)^ wake (figure 

4.30e), which is significantly non-Gaussian again indicates that that flow is not fully 

turbulent, but instead is still transitional. 

Figure 4.31 shows the second order velocity correlations, u'ju'k versus the cross- 

stream coordinate x2 corresponding to the mean profiles in Figure 4.30.   Again, 

because of the symmetry of the initial conditions, u[u'3 and u'2u'3 are zero, so they are 

not shown. These profiles are typical of plane wakes, with the most intense unsteady 

motions occurring away from the wake centerline. As expected, the intensity of the 

unsteady motions increases with increasing Reynolds number. Once again the effects 

of the coherent structures are on the profiles in the vicinity of x2 = ±5.0.  This is 

particularly apparent in the u'2u2 profiles for the wakes in Figures 4.31c-e. This 

implies that the coherent structures shown in Figure 4.13 are still responsible for 

significant unsteadiness in the wakes. 

In a physical flow, the effects of coherent structures on long time averages are 

smeared out. This is due to the presence of low amplitude long wavelength motions 

that cause each set of coherent structures to be offset in space slightly from the other 
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sets. Since the longest wavelength available in any of the simulations presented is 

not very large, the effective averaging domain is not large, and the effects of coherent 

structures on the averages are more pronounced than would be seen in a physical 

experiment. Figures 4.32 and 4.33 are an attempt to get around this shortcoming. 

This has been done by taking mean data from several times near the time of interest 

(approximately t ± O.lt in this case) for each simulation. The separate mean data 

sets are normalized using the integral halfwidth at each time, 6,-(i), and forming a 

combined mean. This effectively increases the sample size, and introduces the sort 

of jitter in the coherent motions that one would expect in a physical flow. 

The long time mean streamwise velocity profiles in Figure 4.32 are considerably 

smoother than the single time mean profiles for the same datasets in Figure 4.30. 

The profiles are significantly more Gaussian in appearance, though the effects of the 

coherent three-dimensional structures are still evident near the edges of the wakes. 

The same smoothing effect can be seen in the long time second order correlations 

in Figure 4.33. The general shapes remain unchanged from the single time plots in 

Figure 4.31, but the bimodal form of the u>i, u'2u'2, and u'3u'3 correlations are more 

clearly evident, particularly for the higher Reynolds number cases. 

Figure 4.34 shows single time mean streamwise velocity profiles for the same set 

of simulations shown in Figure 4.30 but at a later time of approximately t = 200 for 

each wake. Again the single time means for all of the higher Reynolds number wakes 

simulated are quite non-Gaussian due to the strong coherent streamwise structures 

that appear in the flow. Taking a long time average (Figure 4.36) makes the mean 

velocity profiles appear more Gaussian, but the highest Reynolds number wakes 

continue to have distinctly non-Gaussian mean profiles. 

Figure 4.35 shows the single time second order velocity correlations for the same 

set of wake simulations, again at a time of approximately t = 200 for each wake. 

Figure 4.37 shows the corresponding long time correlations.   The most significant 
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thing to note is that the Re = 119 wake (Figure 4.35a) has significantly weaker 

unsteady motions than the wakes at Reynolds numbers. This is due to the fact that 

at that low Reynolds number, the wake never develops strong fine scale motions. 

The effect of fine scale motions is also apparent in the relative magnitudes of the 

second order velocity auto-correlations for the higher Reynolds number wakes.  At 

the earlier time of t ~ 100 shown in Figures 4.31 and 4.33 the u'2u'2 correlation was 

approximately twice the magnitude of the u[u[ and u'3u'3 correlations. At t ~ 200, 

the onset of significant small scale motions have caused these three quantities to be 

both much larger in magnitude relative to the mean flow (note difference in scales 

in Figures 4.33 and 4.37) and much closer in magnitude to each other. This is due 

to the fact that at the earlier time, most of the velocity fluctuations are due to large 

scale coherent structures, which favor the u'2u'2 correlation. At the later time more 

of the velocity fluctuations are due to the more randomly distributed fine scales, 

which contribute equally to all three second order auto-correlations. 
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SECTION 5 

THREE-DIMENSIONAL TOPOLOGICAL DESCRIPTION 

In order to study the fine scale (high wavenumber), high gradient motions in the com- 

puted wakes, a topological classification method has been applied. The method is 

based on concisely summarizing the local flow structures in the space of the invari- 

ants of the velocity gradient, strain rate, and rotation rate tensors. This allows 

information about the local flow geometry for every point in the incompressible flow 

to be presented in the form of two-dimensional joint probability density functions 

(pdfs) of various combinations of the invariants. These pdf plots facilitate the study 

of global tends in the local structure of the fine scales in the velocity field. 

Only a small subset of the invariant space plots for the wakes that have been 

simulated will be presented here. See Sppendix E for a more complete set of plots. 

5.1    Topological Method 

An abbreviated description of the topological method used will be presented in this 

section. An extended description can be found in appendix D. 

The velocity gradient tensor 

Ajk = ujtk (5.1) 

can be split into a symmetric and an antisymmetric part 

Ajk = Sjk + Wjk (5.2) 
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where the symmetric part 

Sjk = ^(uj,k + ukj) (5.3) 

is the rate-of-strain tensor, and the anti-symmetric part 

Wjk = gK* - uk,i) (5-4) 

is the rate-of-rotation tensor. The eigenvalues A of Ajk satisfy the characteristic 

equation 

A3 + PA2 + Q\ + R = 0 (5.5) 

where P,Q, and R are referred to as the invariants of the tensor Ajk and are given 

by 

P   = -Akk = -Skk (5.6) 

Q   = ±(P*-AjkAkj) 

= \(P2-SjkSkj-WjkWkj) (5.7) 

R   = -det[Ajk] 

= \(-P3 + 3PQ - A^AuAtj) 

= I(-P3 + 3PQ-5^,50--3WiAWH5y). (5-8) 

The values of the three invariants P, Q, and R completely determine the eigen- 

values, and therefore the eigenvectors, of the velocity gradient tensor Ajk. Since the 

eigenvectors of Ajk determine the local flow kinematics, the local flow geometry is 

determined to within an arbitrary rotation by the location of the three invariants in 

(P, Q, R) space. See Chong, Perry, and Cantwell [12] for a detailed discussion of the 

local flow geometries associated with the various regions of (P,Q,R) space. 
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Figure 5.1: Invariant Space for Incompressible Flows 

For incompressible flow 

P = 0 (5.9) 

and the second and third invariants reduce to 

Q 

R 

(SjkSkj + WjkWkj) 

--^{SjkSkiSij + SWjkWkiSij). 

(5.10) 

(5.11) 

Hence the local flow geometry is completely determined by the location of the second 

and third invariants of the velocity gradient tensor in (Q, R) space. 

The curve in (QiR) space that separates characteristic equations with all real 

solutions (strain dominated local flow) from those with one real and two complex 
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solutions (rotation dominated local flow) is given by 

27£2+4Q3 = 0. (5.12) 

This curve, along with the Q axis, separates the (Q,R) space into four regions as 

shown in figure 5.1: 

• Above the separator and to the left of the Q axis, the local flow spirals in 

towards the local origin in a plane and then flow out along the third direction. 

This local flow geometry is referred to as a stable-vortex/stretching. 

• Above the separator and to the right of the Q axis, the local flow is toward the 

local origin along one axis and spirals out in a plane. This local flow geometry 

is referred to as an unstable-vortex/contracting. 

• Below the separator and to the left of the Q axis, the local flow approaches 

the origin along two axes and flows outward along the third. This local flow 

geometry is referred to as a stable-node/saddle/saddle. 

• Below the separator and to the right of the Q axis, the local flow approaches 

the origin along one axis and flows outward along the other two. This local 

flow geometry is referred to as an unstable-node/saddle/saddle. 

The flow geometry for a single data point can be determined simply by calculating 

the invariants and determining where they lie in (Q, R) space. Global trends for large 

quantities of data can be examined by calculating the invariants for each point in 

the data set and constructing joint probability density functions (pdf's) in (Q,R) 

space for the entire data set. Moreover, motions with high gradients will tend to lie 

far from the origin in (Q, R) space, so the most intense motions will tend to separate 

themselves visually when viewed in the space of invariants. 
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Other quantities related to the invariants of the velocity gradients tensor are also 

of interest. The second invariant, Q, may be written as the sum of quantities 

Q = -\(sjksik + wjkwjk) 

=   Qs + Qw (5.13) 

where 

Qs = ~\sjkSjk (5.14) 

is the negative-definite second invariant of the rate-of-strain tensor and 

Qw = l-WikW,k (5.15) 

is the positive-definite second invariant of the rate-of-rotation tensor. 

The second invariant of the rate-of-strain tensor is directly proportional to the 

mechanical dissipation rate 

tp = 2uSjkSkj = -^vQs. (5.16) 

Points with a large negative value for Qs have large dissipation. The second invariant 

of the rate-of-rotation tensor is equal to the enstrophy density 

ojjUj = Qw. (5-17) 

Points with large positive values of Qw have high associated enstrophy density. Thus, 

the second invariant of the velocity-gradient tensor can be thought of as a measure 

of the relative importance of strain and rotation. Plots of — Qs vs. Qw reveal 

correlations between strain and rotation fields. Plots of Qs vs. Rs, the third invariant 
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of the rate-of-strain tensor 

R. = -^SjkSklSij (5.18) 

reveal trends in the type of rate-of-strain field associated with high dissipation 

regions. Since the rate-of-strain tensor is symmetric it only has real eigenvalues, 

hence its second and third invariant will always fall underneath the separator, and 

the possible rate-of-strain topologies will be limited to either stable-node/saddle/ 

saddle or unstable-node/saddle/saddle. 

Finally, the vortex stretching rate, <r, may be expressed in terms of the invariants 

of the velocity-gradient and rate-of-strain tensors 

a = WjkWkiSij = RS-R. (5.19) 

Plots of the enstrophy density versus stretching, Qw vs. a can be examined to reveal 

global trends. 

5.2    Effect of Initial Conditions 

Figure 5.2 shows plots of the joint pdf of Q and R for a set of Reb = 346 wakes 

with a variety of combinations of initial disturbance wavelengths. The first feature 

that is apparent is that, as one would expect from the discussion of the wakes in 

physical space presented earlier, the wake initiated with only a two-dimensional 

fundamental and a three-dimensional fundamental (346(60)°*£ in Figure 5.2a) has 

fine scale motions which have much lower gradients (are much weaker) than the 

other wakes (recall that high gradient motions tend to appear far from the origin in 

invariant space). Further, though the wake which has an additional two-dimension- 

al subharmonic disturbance (346(60)$;* in Figure 5.2e) has gradients that are on 

par with the wakes that have a three-dimensional subharmonic disturbance (figures 
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5.2b-d), those high gradients account for a much smaller percentage of the flow as 

evidenced by the relative small area inside the second contour level. Note that the 

contour levels shown are logarithmic, with each contour level being ten times the 

value of the previous level, thus large differences in the area inside of a given contour 

level equate to very large differences in the relative volume of the fluid in physical 

space represented. 

The second feature that is readily apparent is that the overall shape of the joint 

pdf of Q and R is the same for all of the wakes, with high gradients motions 

favoring the upper left (stable-vortex/stretching) and lower right (unstable-node/ 

saddle/saddle) regions of (Q,R) space. This same "skewed teardrop" shape has 

been observed by Soria et al. [42] and Chen et al. [11] in studies of the gradients 

in compressible and incompressible temporally evolving mixing layers, Blackburn, 

Mansour, & Cantwell [3] in a computation of a turbulent channel flow, and Son- 

dergaard et al. [41] in a survey of computations of compressible and incompressible 

shear flows including mixing layers, wakes, and isotropic and sheared homogeneous 

turbulence. 

It is apparent from the wide variety of flow fields which exhibit this feature that 

it is a characteristic of solutions to the Navier-Stokes equations (the pdf of Q and 

R generated from random gradient fields do not exhibit this feature). Cantwell [6] 

performed an analysis of the evolution of the velocity gradient tensor in incompress- 

ible flows and found that, given certain assumptions, the second and third invariants 

were restricted to an attractor in invariant space with a shape similar to the one 

which has been observed. 

Figure 5.3 shows plots of the joint probability density functions of the second 

and third invariants of the rate-of-strain tensor (Qs and Rs) for the same wakes 

shown in Figure 5.2. Once again, the much weaker gradients in the two-dimension- 

al fundamental / three-dimensional oblique fundamental case (346(60)°^ in figure 
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0.0 

■0.0025 

Qs 

Rs 

0.0025 

■0. 03" 

Figure 5.4: Enlarged plot of pdf of Qs vs. Rs for 346(60)^. t = 204.8. Corresponds 

to Figure 5.3b. 

5.3a) are apparent. And again, the 346(60)gg* wake (Figure 5.3e) shows gradients 

on par with the simulations which have a three-dimensional subharmonic, but with 

a much smaller volume of high gradient motions occurring. 

All of the pdf's have the same general shape, with highly dissipating motions 

(large negative Qs) showing a strong preference for the unstable-node/saddle/saddle 

type topology. This strong preference continues even for more moderately dissipating 

regions as demonstrated by Figure 5.4, which is a magnified version of Figure 5.3b. 

These moderately dissipating motions account for the majority of the total dissipa- 

tion in the flow. Again, these same trends were observed by Chen et al., Soria et 

al., Blackburn et al., and Sondergaard et al. in a wide range of other flows. 

Figure 5.5 shows plots of the joint pdf of -Qs (dissipation) and Qw (enstrophy 

density) for the same set of simulations shown in Figures 5.2 and 5.3. Once again the 
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Qw T 0 . 2 

Rs-R 
i h H 

-0.025 0.0 0.025 

Figure 5.6: Contour plots of joint pdf of Qw vs. Rs - R for 346(60)ggg. t = 197.0. 

much lower gradients for the three-dimensional fundamental cases (Figures 5.5a and 

5.5e) is apparent. These wakes also have a pdf shape which which is different than 

those for the wakes with a three-dimensional subharmonic (Figures 5.5b-d). The 

"L" shaped pdf in Figures 5.5a and 5.5e, which tends to hug the axes, is common 

in non-turbulent flows and flows in which the turbulent motions have not had time 

to fully develop. The highest mechanical dissipation rates in such flows tend to 

occur in the high strain-rate regions between large organized vortical structures, 

thus the shape of the pdf. The half ellipsoid shape seen in Figures 5.5b-d is much 

more typical of strongly three-dimensional flows, where regions of high strain-rate 

are closely intermingled with regions of high vorticity. 

The "tongues" of highly rotational points that appear in the flows with a three- 

dimensional subharmonic, particularly in Figures 5.5b and 5.5c, correspond to the 

centers of the strong streamwise structures seen in physical space (since those struc- 

tures contain the highest enstrophy density motions in the wake).  It is clear from 
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Figure 5.5 that while the most dissipating motions (largest \QS\) tend to be associ- 

ated with the regions of highest enstrophy density (scattered points near -Qs = Qw 

line, most obvious in Figures 5.5a,b and e), the bulk of the high enstrophy density 

points in the wake have only moderate dissipation rates. This leads to the conclu- 

sion that the bulk of the most mechanically dissipating motions in the wake occur 

in the vicinity of the highest enstrophy density motions, but are in fact associated 

with more moderate enstrophy density levels. This is not entirely unexpected, since 

many models of the structure of turbulent motions produce peak dissipation rates 

separated from the peak enstrophy density location (c.f. Burger's vortex). 

Figure 5.6 shows the joint pdf of Qw (enstrophy density) and Rs — R (vortex 

stretching rate) for the 346(60)g°o wake- The points with the highest enstrophy 

density occur in regions of the flow that have the strongest vortex stretching. This 

comes as no surprise since the effect of stretching is to amplify the vorticity aligned 

with the strain field. This result is typical of all the three-dimensional flows which 

have been studied. 

5.3    Effect of Reynolds Number 

Figure 5.7 illustrates the effect of Reynolds number on the invariant pdf's. Shown 

is the joint pdf of Q and R for (?)(60)g°£ wakes all at approximately the same 

developmental time. The effects of increasing the Reynolds number is to greatly 

increase both the magnitude of the highest gradients and the fraction of the flow 

which contains high gradient motions. 

Changing the Reynolds number has minimal effect on the overall shape of the 

pdf's (given that the Reynolds number is high enough to allow for strong three-dim- 

ensional motions).  The only effect of increasing the Reynolds number is to make 
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the highest gradient regions appear a bit more scattered (compare Figure 5.7d and 

Figure 5.2b on page 168). 

5.4   Time Evolution in Invariant Space 

Figure 5.8 illustrates the time evolution of the wake flows in invariant space. Shown 

is the joint pdf of Qs and Rs for the 346(60)^ wake. The initial shape of the pdf is 

determined by the initial conditions of the flow (Figure 5.8a), but it rapidly relaxes 

to the general shape which has been observed in the other flows, and which will be 

maintained throughout the remainder of the evolution (Figure 5.8b). 

The strong gradient motions, which are associated with strong three-dimension- 

ality, become much more significant (note the much larger area encompassed by the 

second and third contour levels in Figure 5.8c as compared to Figure 5.8b). The 

magnitude of the highest gradient motions then begin drop as the wake approaches 

a self-similar regime where all the gradients should decay like f~1/2. At the time 

shown these wakes have not yet entered the self similar decay regime. 

This developmental cycle is common to all of the invariants for all of the three- 

dimensional wakes simulated, and is independent of Reynolds number. 

5.5     Rate-of-Strain Distributions 

Figures 5.9 and 5.10 show plots of the probability density functions of the normal- 

ized principal rates-of-strain, a, ß, and 7, for the 346(60)g°* and 1384(60)§j£ wakes 

respectively. The strain rates are sorted such that they are in descending order 

a > /? > 7 (5.20) 

and the rate-of-strain in each principal strain direction has been normalized by the 

magnitude of the intermediate rate-of-strain, \ß\. Thus the normalized intermediate 
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rate-of-strain, /?, can take on values of positive or negative one only 

0=±1.O. (5.21) 

This is the reason for the delta function distribution for ß. 

There is a direct correspondence between the sign of ß and the local rate-of- 

strain topology. If ß = +1.0, then the local rate-of-strain topology is of the type 

unstable-node/saddle/saddle. If ß — —1.0, then the local rate-of-strain topology is 

of the type stable-node/saddle/saddle. 

If the pdf 's are formed using all of the grid points in the computational domain 

(including those in the freestream), they appear as in Figures 5.9a and 5.10a. 

Approximately two-thirds of the points have a rate-of-strain field consisting of two 

positive and one negative rate-of-strain (ß = 1.0). The other two rates-of-strain 

have broad distributions with peaks around a « 2.0 and 7 « —3.0. 

If the pdf 's are conditioned so as to include only those points with high mechan- 

ical dissipation, which is proportional to — Qs, then they appear as in Figures 5.9b 

and 5.10b. The high dissipation points have rate-of-strain fields which almost exclu- 

sively consist of two positive and one negative rate-of-strain (ß = 1.0, unstable-node/ 

saddle/saddle rate-of-strain topology as was apparent from Figure 5.3b). The dis- 

tributions of a and 7 still have rather broad distributions, but with more distinct 

peaks at a « 1.5 and 7 fts —2.5 This result is insensitive to Reynolds number, and 

holds for all of the three-dimensional wakes computed, even those with relative weak 

three-dimensional motions (e.g. 346(60)^). 

Ashurst et al. [2] studied a direct numerical simulation of isotropic turbulence 

and found that the strain-rates for the most dissipating motions were in the ratio of 

a. : ß : 7 = 3 : 1 : —4, which they speculated might be a universal ratio. The studies 

of Soria et al.   [42] and Chen et al.   [11] and Sondergaard et al.   [41] found that 
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the ratio of principal rates-of-strain depended on the specific flow examined. The 

strain-rate ratio of a : ß : 7 « 1.5 : 1 : -2.5 found here for the three-dimensional 

incompressible plane wake adds weight to the conclusion that the ratio is indeed 

flow-dependent 

5.6     Vorticity-Strain Alignment 

Figures 5.11 and 5.12 show plots of the probability density function of cosine of 

the angle between the vorticity vector and each of the three principal strain-rate 

directions for the 346(60)^ and 1384(60)g^ wakes. The pdf of the cosine is plotted 

because in those coordinates randomly distributed three-dimensional vorticity vec- 

tors will result in uniform pdf's. 

There is a clear tendency for the vorticity vector to be aligned (cosine equals one) 

with the intermediate rate-of-strain (ß) direction and nonaligned (cosine equals zero) 

with the most compressive rate-of-strain (7) direction in both wakes (Figures 5.11a 

and 5.12a). When only the points with the highest dissipation rates, and hence 

the most intense local rate-of-strain fields, are included in the pdf, this tendency is 

strongly enhanced (Figures 5.11b and 5.12b). The vorticity aligns almost exclusively 

with the intermediate rate-of-strain direction and is nearly always approximately 

perpendicular to the most compressive rate-of-strain direction. 

Again, similar results were observed by Ashurst et al. [2] for isotropic turbulence. 

They also found that the vorticity tended to align with the intermediate rate-of-strain 

direction. The studies of Soria et al. [42] and Chen et al. [11], Sondergaard et al. 

[41], Blackburn et al. [3] and Tsinober et al. [47] found the same tendency for a 

wide variety of other flows. The evidence that this is a universal characteristic of 

turbulence is becoming very convincing. 
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SECTION 6 

CONCLUSIONS 

6.1    Numerical Method 

The numerical method developed to perform the simulations used for this study has 

proven to be both effective and efficient. For planar flows with compact vorticity 

fields, matching of the velocities at the edge of a finite sized computational domain 

to irrotational flow solutions is a workable alternative to nonlinear mapping of the 

infinite direction to a finite domain. 

The velocity matching method provides uniform resolution of the vortical region 

of the flow without wasting large fractions of the available grid points on the 

freestream or over-resolution of the centerplane of the flow. Use of a Fourier method 

on the uniform grid also allows for changes in resolution to be accomplished by 

simply truncating the transformed data or padding it with zeros at runtime. No 

special routine or extra computational time is needed to rebuild the grid or dataset 

after a resolution change. 

The addition of a growing grid in the cross-stream direction allows the compu- 

tational domain to adapt to the changing size of the vorticity field as the simulation 

evolves. This permits the flow to remain resolved even over long simulation times 

with minimal need for intervention on the part of the user. Changes in grid size of 

a factor of two or more while the simulated wake grew in extent by factors of five 

were routine when running the simulations for this study. 
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6.2    The Incompressible Plane Wake 

6.2.1    Physical Development 

The results presented here indicate that oblique disturbances at the subharmonic 

wavelength are very important to the development of strong three-dimensionality in 

the temporally evolving incompressible plane wake. Simulations started with a two- 

dimensional fundamental disturbance and a three-dimensional disturbance at the 

subharmonic wavelength developed strong streamwise structures stretching between 

corrugated spanwise rollers on the same side of the wake. These structures create 

very high rates-of-strain which lead to the appearance of fine scale motions and 

rapid growth rates in the far wake. Simulations started with three dimensional 

disturbances at only the fundamental wavelength remain almost two-dimensional, 

with relatively weak rate-of-strain fields, no significant small scale motions, and 

sluggish late time growth patterns which nearly match the corresponding purely 

two-dimensional wakes. 

Varying the Reynolds number affects the intensity and scale of the structures 

in the flow. This effect is especially strong in wakes which develop strong coherent 

three-dimensional structures (wakes initiated with an oblique subharmonic). At 

high Reynolds number these wakes develop very intense fine scale motions even at 

moderate Reynolds numbers. The most intense fine scales tend to appear in the 

vicinity of the coherent three-dimensional structures. Wakes which do not develop 

strong three-dimensional coherent structures (wakes initiated with an oblique fun- 

damental) develop small scales only at the very highest Reynolds numbers. The 

Reynolds number of the wake has minimal impact on the growth rate of the far 

wake. Wakes with very low Reynolds number do not develop strong three-dimension- 

al structures, and grow somewhat more slowly at late times. Wakes with moderate 

to high Reynolds numbers grow at similar rates given similar initial conditions. 
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The addition of longer wavelength disturbances allows for scale changes in the 

flow and can temporarily augment the growth rate of the wake. This has impli- 

cations for the interpretation of temporal simulations, where the flow is restricted 

to a maximum wavelength corresponding to the longest wavelength in the initial 

disturbance field. At late times in the simulation the flow will not follow a growth 

path which can be related to that of a spatially developing wake. 

This result also has implications for experiments involving spatially developing 

wakes. Any experiment is by necessity limited by the dimensions of the facility 

in which it is performed. The sensitivity of the wake to subharmonic disturbances 

which has been observed in these computations suggests that the rate of growth of 

experimentally studied wakes may be sensitive to the low frequency spectral content 

of naturally occurring disturbances in experimental facilities. 

6.2.2    Topological Development 

Topological analysis of the fine scale, high gradient motions in the incompressible 

wakes revealed that the wakes with a three-dimensional subharmonic have a greater 

quantity of more intense high gradient motions as compared to wakes with a three- 

dimensional fundamental only. Changes in the phase of the initial disturbances 

were found to have minimal impact on the overall distribution of the high gradient 

motions. Increasing the wake Reynolds number increased the intensity of the gradi- 

ents while preserving the shape of the pdf's in invariant space. 

All of the three-dimensional wakes simulated had joint probability density func- 

tions which were similar to those observed in other three-dimensional flows: 

• Joint pdf's of the second and third invariants of the velocity gradient tensor 

have a characteristic "skewed teardrop" shape, with high gradient motions 
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tending to be of stable-vortex/stretching and unstable-node/saddle/saddle 

topological types. 

• Joint pdf s of the second and third invariants of the rate-of-strain tensor 

indicate that the most dissipative motions are associated exclusively with 

an unstable-node/saddle/saddle type strain topology. More moderately dis- 

sipating motions, which account for the majority of the dissipation in the flow, 

are also very strongly associated with an unstable-node/saddle/saddle type 

strain topology. 

• Joint pdf's of the enstrophy density and vortex stretching indicate that the 

highly rotational motions occur in regions where the vortex stretching is pos- 

itive, even at late times when the intensity of all gradients are decreasing in 

the wake. 

Examination of the rate-of-strain distributions and the vorticity-strain alignment 

indicates that highly dissipating motions have a strong tendency to have two positive 

and one negative principal rates-of-strain (which corresponds to an unstable-node/ 

saddle/saddle type rate-of-strain topology) in the ratio of 1.5 : 1 : -2.5. These 

motions also tend to have the vorticity vector aligned with the intermediate (positive) 

strain rate direction and nearly perpendicular to the most compressive (negative) 

strain rate direction. These results appear to be insensitive to both Reynolds number 

and initial condition. 

6.3    Future Work 

As a direct extension of this study, the following work is recommended: 
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• The effect of the angle of the oblique disturbance needs to be examined, at least 

to the extent of verifying the broad range of amplified secondary instabilities 

predicted by the work of Flemming [16]. 

• With the recent availability of larger and faster parallel machines, the existing 

code should be used to simulate wakes at higher Reynolds numbers and for 

longer times. This is necessary to verify that the profound difference between 

wakes with short wavelength oblique disturbances and wakes with long wave- 

length oblique disturbances continue to exist at very high Reynolds numbers 

and at late times. 

• To adequately simulate late time behavior, the wake simulations need to be 

run with the addition of longer wavelength disturbances to allow for continued 

unconfined growth. This should also allow for much realistic calculation of late 

time mean profiles and turbulence statistics. 

In addition, the code which was developed for this study can readily be used to 

study a wide variety of planar free shear flows, including mixing layers (as demon- 

strated in Section 2.8.1), skewed mixing layers, and momentumless wakes. Appli- 

cation of the code to these flows requires only that the proper initial conditions for 

the vorticity field and free stream flow velocities be defined. 
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Appendix A 

CLASSICAL SIMILARITY THEORY 

This appendix will present a brief review of the arguments and conclusions of simi- 

larity theory as applied to free shear flows in general and the incompressible plane 

wake in particular. 

A.l    Preliminaries 

A.1.1    Energy Transport Equation 

The Navier-Stokes equations for incompressible flow may be written as 

uj,j = 0 

uj,t + ( U
J
U

I + ~&ii ~ ZvSji J    = 0 

where Sjk is the rate-of-strain tensor defined by 

(A.l) 

(A.2) 

Sjk = 2 (ui.fc + uk,j) ■ (A.3) 

Multiplying equation A.2 by uj, gives 

Uk 
P, ui,t + [ ujui + -öji — 2vSji I 

(ujUk)it + I UjUkui + - (ukSji + UjSki) - 2u (ukSji + UjSki) 1 
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2^Sjk + 1v (Sjt (Ski + Wki) + Ski (Sji + Wji)) = 0 (A.4) 
P 

■K 

where Wjk is the rate-of-rotation tensor defined by 

Wjk = ^{uj,k-ukJ). (A.5) 

Taking the trace of equation A.4 and noting Su = 0 for incompressible flow gives 

the transport equation for the kinetic energy E = UkUk/2 

E,t + lEuk + -uk - 2vujSjk]   + $ = 0 (A.6) 

where $ is the dissipation of (total) kinetic energy 

$ = 2vSjkSkj > 0. (A.7) 

The flow variables may be split into mean and fluctuating parts 

Uj =üj + u'j       p = p + p (A.8) 

where the overbar signifies an appropriate average of the variable (temporal or 

ensemble for spatially developing flows, spatial or ensemble for temporally devel- 

oping flows) and the primed quantities are deviations from that mean. 

Using this decomposition, and applying the averaging procedure to the Navier- 

Stokes equations A.2 yields the Reynolds equations 

üjtj - u'jd = 0 (A.9) 

üj,t +   üjük + -Sjk - 2uSjk + -uWj.      = 0 (A. 10) 
V P P       J,k 
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with a mean kinetic energy defined by 

E   =    (ujuj + u'ju'j)   2 

=   E + f (A.ll) 

where E is the energy of the mean flow and q2 is the turbulent kinetic energy. 

A transport equation for the energy of the mean flow may be derived from equa- 

tion A. 10 by multiplying by üj and rearranging 

Ett +   ükE + -üfc - 2uüjSjk + üju'ju'k I    + 2vSjkSkj - u'ju'k Sjk = 0       (A.12) 
V        P ),k 

Similarly, a transport equation for the total mean energy can be derived from 

equation A.6. 

E,t + q2,t + (Euk   +   q2uk + -uk - 2vujSjk + Uju'ju'k + q2u'k + — u'k 

-   Ivu'jSjk)^ + 2vSjkSkj + 2uS'jkS'kj = 0. (A.13) 

Subtracting out the equation for the mean flow energy, equation A.12, from the 

above equation yields an equation for the transport of mean turbulent kinetic energy 

T ,  ?., 
q

2+[q2ük + q2u'k + ^u'k-2uU'jS'jk\    =U-ip (A.14) 
V P J ,k 

where 

IL = -u'ju'kSjk (A. 15) 

is known as the turbulence production, and 

<p = 2z,Sp£ (A.16) 
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r is the dissipation of turbulent kinetic energy. The production, II serves to transfer 

kinetic energy from the mean flow to the unsteady flow, while the dissipation serves 

^ to convert turbulent kinetic energy into heat. 

It has been observed in a number of flows with simple geometries that at suffi- 

ciently high Reynolds number the production scales locally with the dissipation 

n~<p. (A.17) 

or 

-uMSjk~2vS'jkS'ki (A.18) 

A complete theoretical understanding of this relationship between production and 

dissipation is still lacking. The evidence for equation A.18 is empirical and confined 

to a limited range of flows. However this is used as the basis for arguments presented 

in the following sections. 

A.2   Scales of Motion 

Equation A.18 allows for an estimate of the relative size of the large and small scales 

in the flow. Assume that the velocity fluctuations and the mean velocity both scale 

with the same reference velocity 

u'- ~ üj ~ U0 (A.19) 

and that the largest scales in the flow scale with some reference length 6. This allows 

an estimate of the scale of the left hand side of equation A.18 

U = -Ifir
kSjk~

lf (A.20) 
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The scaling of the right hand side is more problematic, since it involves the mean 

of products of the gradient of the fluctuations. Clearly the appropriate velocity scale 

to use is Uo since u'j ~ UQ, but the appropriate length scale to use is unclear. 

There are two turbulence length scales, or microscales, that are commonly used to 

complete the above scaling: The Taylor microscale, and the Kolmogorov microscale. 

A.2.1    The Taylor Microscale 

The Taylor microscale, A, is defined such that the proportionality given in equation 

A. 18 is satisfied 
773        772 

(A.21) 

giving 

T~VU 

A 

8 

f v y/2      1 
\W)      ~ Re1/2' 

(A.22) 

This microscale represents an upper bound on on the range of scales that contribute 

to significant turbulent kinetic energy dissipation. 

In this study, two version of the Taylor microscale were calculated for use in 

estimating the resolution of the simulations that were performed. The first version is 

one that appears in many experimental studies where obtaining the three-dimension- 

al velocity and velocity gradient field is very difficult. It relies on the measurement 

of only one velocity (usually Ui) 

(A.23) 

The second version used here includes the velocities and gradients in all three 

directions 

(A.24) 
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which is derived from the definition which appears above for the general case. 

The Taylor microscale also arises in correlation functions which appear in the 

theory of isotropic turbulence. For a complete description see the discussions in 

Hinze [18]. 

A.2.2    The Kolmogorov Microscale 

The second scale is a result of introducing both a new turbulence length scale and 

a new turbulence velocity scale so as satisfy the proportionality in equation A. 18 

0 T]1 
(A.25) 

To close the definition, the Reynolds number of the resulting scale is chosen to be 

one 

(A.26) 

These lead to the relations 

and 

TjV 

V 
_1. 

6 
1 

ReT 

V 

Uo 

1 

ReT' 

(A.27) 

(A.28) 

The Kolmogorov microscale represents a lower bound on the on the range of 

scales that contribute to significant turbulent kinetic energy dissipation. For both 

the Taylor and Kolmogorov microscales it should be kept in mind that they are only 

estimates of the actual turbulent length scales. 

A.3    Evolution of the Spatially Evolving 
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X2 = H/2 

x2 = -H/2' 

Figure A.l: Schematic of spatially evolving wake.  Control volume for momentum 
balance. 

Incompressible Plane Wake 

A.3.1    Momentum Balance 

Figure A.l shows schematically the wake behind a symmetric body with a drag force 

per unit span of D. 

For a sufficiently large control volume (the dotted box in Figure A.l), only the 

downstream edge of the control volume and the drag on the body contribute to 

the momentum balance in the control volume. The upstream boundary and top 

and bottom of the control volume are at free stream conditions, and therefore have 

negligible contribution to the momentum. Thus, for sufficiently large H, an integral 

momentum balance over the control volume becomes 

D 

P 

H/2  r 

-H/2 

ui(x2) (u1(x2) -uco) + 
'p{x2) -Vco\      rn(aj2) - Tiic 

dx2     (A.29) 

where TJJ is the stress tensor. 
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*' = -H'2 'ax, 
Figure A.2: Schematic of spatially evolving wake. Control volume for energy balance. 

In the far wake, 

Ui - Uoo 

Ur 
<1. (A.30) 

Combining this with the similarity assumptions 

—%— = u{j (A.31) 

and 
fp(x2) - Poo _ rii(a2)-Tiioo\    /    2 _ 2 (x± 

(A.32) 
P P j'    ~     ■ \8 

where 8 is a measure of the mean flow width and UQ = u^—ü^ is a reference velocity, 

allows the momentum balance to be written as 

D 

pUo< 

H/26 H/26 

= tw / Ä(f).(f) + ^ / /(f). 
-H/2S -H/26 

(A.33) 
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In the far wake, the second integral is much smaller than the first, and the momentum 

balance can be approximated as 

D 
H/26 

(A.34) 

-H/2S 

Under the assumption of self-similarity (the profile is a function of x2/8 only), the 

integral is a constant, in this case of order one. Thus, in the far wake 

UoS 
D 

PUX 

(A.35) 

A.3.2    Mean Kinetic Energy 

The evolution of the mean kinetic energy can be derived from the integral of equation 

A. 12 over the infinitesimal control volume shown in figure A.2 

j[E,}dV   +   /[( 
V V     N 

P- 
dV   +    I   [ ukE + -uk - 2uujSjk + Uju'ju'k I    + ZvSjkSkj dV 

~    ~ jlu'ju'kSjk]dV. 
V 

(A.36) 

Assuming the flow is stationary, the first integral is zero (constant total energy in 

the control volume). The second integral may be converted into a contour integral, 

giving 

/ 
P-. UkE + -uk - 2uujSjk + Uju'ju'k + 2uSjkSkj 
P 

dVli 

V 

dV. (A.37) 

where 0 is the contour surface and Uk is a surface normal. 
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Let AU = UQO - Tit and Ap = Poo ~ P- Evaluating over the volume in A.2 and 

assuming the mean flow is in the x\ direction yields 

-Hß   X ' -HIT   V  r ' 

HfT 

+ 

r   TT   I Ap     SAU   .  , 
J   U00[-^ + —z— | dx2 

-H/T 

H/T   I 

[/ -HIT    \ 

P 2 

(ApAÜ     AÜ3 

AU U'U'   dx2 
J.i 

-H/T 

~ J [U'jU'k SJk dV. 

Introducing the similarity assumptions 

AU      A fx2 

T/ö^HT 

Ap     3AU 
p 2 <* = /(? 

ApAU     AU -AUU'U'\/ul = g{^ 

u'ju'kSJk i (XT 

yields 

,P 2 

ff/25 

(A.38) 

(A.39) 

(A.40) 

(A.41) 

(A.42) 

-H/2S -HITS 

HITS HITS 
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The first term on the left is zero since, by equation A.35, U06 is constant. The third 

term dies off much more rapidly in the far wake than either of the remaining terms, 

so it may be dropped. This leaves the approximate relation 

H/28 H/26 

-H/28 -H/26 

The integrals are constants of order one, hence 

(A.44) 

Uoo (uis)A ~ ul (A.45) 

Combining this with equation A.35 gives 

and 

(A.46) 

(A.47) 

the asymptotic growth laws for the spatially evolving incompressible plane wake. 

A.4   Evolution of the Temporally Evolving 

Incompressible Plane Wake 

A.4.1    Momentum Balance 

For the temporally evolving plane wake the total momentum deficit per unit plan 

area M (momentum per unit span per unit length) is a constant. Thus 

H/2 

  =     /    {Uco -Ui(x2)) 
0 J 

dx-2 (A.48) 

-H/2 
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Applying the similarity assumption from equation A.31 yields 

M 

P 

H/25 

-«, / «(?>( 
-H/2S 

(A.49) 

Again, the integral is a constant of order one, thus 

TTH      M 

P 
(A.50) 

A.4.2    Mean Kinetic Energy 

The development of the results for the mean kinetic energy are identical to those 

for the spatially evolving wake except that the time derivative of the mean energy 

is not dropped. The equivalent to equation A.38 is 

H/2 

I 
-H/2 
IK- 2UooAU + ACT) dx2 

J ,t 

H/2 
^ooPoo Uj. 

d,X' 
J,l 

If 
-H/2 

H/2 H/2 'poo     31/1 \ iT7,   i        rT„    ( Ap     SAU2 .  . 
+ -^ I AI7dx2] x - [ J   Uoo I — + —^— | cte2 

-H/2    x  ' ' ' -H/2 

H/2 

+ 
-H/2    \ 

P 2 

(ApAÜ     AW 
TT3 

2    -At/i7'£/'Jdx2Jii 

'jfc dV. (A.51) 

Applying the similarity assumptions from equations A.39 through A.42 gives 

(TT2  TT\ "If       ,      .        ,      v (TT2?\       HI
25 H/2S 

I 
-H/2S 

(w. / <¥M?)+^ / *2(rM 
-H/25 

±1 
s 

_   P™     3*7« 

W 2 

2 v 

oo 

H/25 

/ 
-H/2S 
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H/28 

-H/26 

H/26 

2-2 

6 

- -U3 
— u0 

-H/26 

H/28 

I 
-H/26 

x^d(xj. (A.52) 

The first term is zero since H is a constant. The same holds for the second term 

since, by equation A.50, UQ8 is a constant. All of the terms which are differentiated 

with respect to x\ are zero since in a temporal wake there is no spatial variation of 

the mean. This leaves the third term on the left and the term on the right 

2 H/28 
(U6s),t     I   ü2 (X* 

H/28 

-H/28 
<T)~°IJKTH 

-H/28 

Again, the integrals are constants of order one, hence 

MS).- -U3 

(A.53) 

(A.54) 

Combining this with the result from equation A.50 yields 

and 

(A.55) 

(A.56) 

the asymptotic growth laws for the temporally evolving incompressible plane wake. 
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Appendix B 

LINEAR STABILITY THEORY 

In the interest of completeness, this appendix will present a brief overview of linear 

stability theory. A brief outline of the methodology used in the present study to 

generate the disturbance eigenfunctions will also be presented. 

B.l    Mean Flow 

The mean base wake flow for all of the present simulation runs was the parallel 

Gaussian profile (properly non-dimensionalized) 

«i = l- Au^0e~Cl^ (B.l) 

«2 = «3 = 0 (B.2) 

p = const (B-3) 

where A«^o is the dimensionless centerline velocity deficit, and C\ is a scaling factor. 

The scaling factor cx was chosen to be 0.69315 and Au^o was chosen to be 0.692 

which gives an initial wake halfwidth &o of 1.0, and an initial Reynolds number based 

on halfwidth of 0.692/z/. These values were used in the previous experiments of Sato 

& Kuriki [39], Corke, Krull, & Ghassemi [14], and in the computations of Chen, 

Cantwell, & Mansour [10]. 
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B.2    Linearized Disturbance Equations 

Starting with the full incompressible, uniform density Navier-Stokes equations 

UJJ = 0 (B.4) 

Uj,t + UkUj,k + — = VUj,kk (B-5) 
r 

P,kk = PUk,lUl,k (B.6) 

a total flow consisting of the mean base flow defined in equations B.l through B.3 

plus a small perturbation 

Uj = üi^ij + u'j (B.7) 

p = p + p' (B.8) 

is substituted into equations B.4 through B.6. 

u', = 0 (B.9) 

üiAi + u'j,t + ("i^i* + uI)(öiA + u'j,k) + — " = "(öi,***ii + ui,fc/t)    (B.10) 
r 

P,kk + p[kk = p(üi,köij + «j,fc)(«ij*ifc + w*j) (B-11) 

The mean flow satisfies the Navier-Stokes equations, hence the mean flow terms 

may be subtracted out from equations B.9 through B.ll leaving the nonlinear dis- 

turbance equations 

U'H = 0 (B.12) 

J.fc     p 

P'M = P(2üi,2«'2ll + <,iuU) (B-14) 

u'jt + ü!u'jtl + u'2uh26ij + u'ku'jtk + ^- = vu'jikk (B.13) 
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4 The perturbations are assumed to be small and products of perturbation terms are 

dropped, giving the linearized disturbance equations 

u'h] = 0 (B.15) 

p'. 
u'j,t + «i«j,i + u'küirfij + -^ = vu'j>kk (B.16) 

r 

P[kk = 2/mi,2u'2il (B-17) 

The disturbance flow is assumed to have the form of a traveling wave 

u'j = u^y^^1*-^ (B.18) 

p' = p(x2)e
i^x'+ßX3-ct) (B.19) 

where a and ß are real wavenumbers which determine the wavelength and wave 

angle, and c = c^ + ic{ is a complex wavespeed. 

Substituting into the linearized disturbance equations 

iau\ + u2,2 + ißu>3 = 0 (B.20) 

i(aüi - c)üi + ü1)2u2 = p + v(wi,22 - (a  +/?)^i) (B.21) 

i(aüi - c)u2 = —p,2 + Ku2,22 ~ (
Q2

 + ß2)^) (B.22) 

i(aüi - c)ü3 = p + z/(&3,22 - (a2 + ß2)^) (B.23) 
r 

P,22 - {a2 + ß2)f> = 2iapü1,2Ü2 (B.24) 
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Equations B.20 through B.23 may be combined to eliminate the pressure. After 

some manipulations, equations B.20 through B.23 can be reduced to the equations 

v (D2
 - (a2 + ß2)f - i(aü! - c) (D2

 - (a2 + ß2)) + ia(D2üA ü2 = 0    (B.25) 

and 

v [[D
2
 - (a2 + ß2)) - i(aüi - cj\ (aü3 - ßux) = -ß{Düx)u2. (B.26) 

Here the differentiation operator D = ()>2 has been introduced for the sake of clarity. 

Any physically meaningful disturbance must decay to zero as |rc2| —> oo, thus the 

appropriate boundary conditions for these equations are 

[u2,DÜ2\ —> 0       as \x2\ —> oo (B.27) 

and 

au3 — ßüi —> 0       as \x2\ —> oo (B.28) 

Equation B.25 is the well known Orr-Sommerfeld equation. Equation B.26 is 

known as the Squire equation. The form of equations B.25 and B.26 indicate that 

there are are two classes of solutions to the set of linear equations B.20 through 

B.23 ([8]). The first class is comprised of solutions to equations B.25 and B.27 with 

equations B.26 and B.28 used only to solve for Ui and Ü3 once u2 is known. The 

second class is comprised of solutions with «2=0 which satisfy equations B.26 and 

B.28. The solutions we will seek here are in the first class. 
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B.3    Solution of the Linear Equations 

The technique used to solve equation B.25 subject to B.27 was the spectral method 

developed by Spalart et al. A brief overview of the procedure will be given here. 

The reader is directed to Spalart, Moser, and Rogers [44] for a complete detailed 

description. 

Spalart et al. begin by defining a vorticity perturbation component perpendicular 

to the wave vector (a, ß) 

^ = -^ + °f3 (B.29) 

where 

and 

vtfT? 

u>! = Du3 — ißü2 (B.30) 

cl>3 = iau2 — Düi (B.31) 

are the perturbation vorticities. 

Applying continuity (equation B.20) allows UJ
X
 to be written in terms of u2 only 

i^/a2 + ß^L = [D2 - (a2 + ß2)\ u2. (B.32) 

Substituting equation B.32 into equation B.25 gives 

v (p2 - (a2 + ß2)) - i-(a«i - c)] VW/3%1 = -a{D2üx)u2 (B.33) 

with boundary conditions 

u>x —> 0        as |x2| —> oo. (B.34) 
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Equations B.33 and B.34, along with B.32, are solved using a standard Galerkin 

method. The known and unknown functions, /(x2), are expanded in terms of a 

set of orthogonal basis functions Rj derived from the (1,1) Jacobi polynomials on a 

mapped coordinate r/ 

U^TI) = ajRjiv) (B.35) 

u2(v) = 6^-1^-1(77) + bNTN(r]) + bjRjir]) 

üI(T/) = c3Rj(r]) 

RAV) = (1 - r}2)P?'%) 

n = tanh (g J 

(B.36) 

(B.37) 

(B.38) 

(B.39) 

where x°2 is a scaling factor for the mapping and Tj are exponential "extra" functions 

determined from 

D2-(a2 + ß2) Rj (B.40) 

which come about from the inversion of the Poisson equation B.32. 

Derivatives of the basis functions Rj{rj) can be expressed in terms of the basis 

functions themselves using the recursion relation 

DRi   = i + i 
x°2(2j + Z) 

=   LjkRk 

((i + l)Äi-i-(j + 3)Äj+1) 

(B.41) 

Substituting equations B.35, B.36, and B.41 into equation B.32 allows the unknown 

coefficients a,j to be written explicitly in terms of of the unknown coefficients bj 

x/o^+F^)2 

'^_26,_2 + (ei-(x°)2(a2 + /32))6i 

[ d^-i + (x°2)
2b 31 J 

1....N-2; 

N-l, N; 
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=   Mjkbk (B.42) 

where dj, ej, and fj are known rational functions of the expansion index j. 

Substituting the above into equation B.33 and applying a scalar Galerkin method 

with test function Rk results in an N x N matrix eigenvalue problem for the coeffi- 

cients aj of the form 

Ejkak = ccij (B.43) 

where Ejk is a complicated matrix (which will not be presented explicitly here) 

formed from Ljk (the derivative recursion matrix), Mjk (which relates the unknown 

coefficients aj to of the unknown coefficients bj), the known expansion for üi, and 

the known parameters a and ß. 

This eigenvalue problem is solved using a standard numerical package which 

returns the N complex eigenvalues, c, and their corresponding eigenvectors. The 

most unstable eigenfunction for the given input parameters (üi, a, and ß) is the 

one corresponding to the eigenvalue with the largest complex component c,-. That 

eigenfunction is normalized and used to form the needed disturbance function. 
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Appendix C 

ALIASING AND ALIAS CONTROL 

This appendix presents an overview of numerical aliasing and the techniques used 

in this study to control the associated errors. 

C.l    Discrete Fourier Transforms and Aliasing 

The one-dimensional discrete Fourier transform (DFT) of a series a,j of length N is 

given by 
JV-1 

a» = ^ t ***** (c-1) 
with inverse transform 

NU 

aj ="f: aneM*. (C2) 
n=0 

Consider a series a,j which represents a complex sinusoid with integer wavenumber 

k and constant amplitude C 

a3 = Ce2™». (C.3) 

The DFT of this series is 

*n = § E e-^iä^ = C6((k - n) mod N) (C.4) 

where 6 is the discrete delta function 

fl,   if J = 0 
S(j) = . (C5) 

[ 0,    otherwise. 
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A Hence a wave with wavenumber k in physical space is transformed into Fourier 

space with a wavenumber (k — n) mod N. For example, if k = TV + L, the series is 

„ transformed as if it were a series with a wavenumber oi n = L = k — N. This effect 

can been seen directly in physical space since for any integer M 

at = Ce^ = Ce^M±£m. (C.6) 

Thus data separated by M periods N in physical space are the same. Wavenumbers 

k + MN are said to be "aliased" to wavenumber k. 

Aliasing errors occur in practice when operations on data with wavenumber span 

N increases the wavenumber span to greater than N. Such is the case with the 

nonlinear terms in the Navier-Stokes equations, which are bi-linear products of the 

dependent variables. The remainder of this discussion will be limited to such prod- 

ucts. 

To examine aliasing in bi-linear terms, consider the one dimensional product of 

two series of length iV 

N-l .   N-l 

n=0 m=0 

N 

N-l N-l .. _,_   . 

=    EE«Xe2"^. (C.7) 
n=0 m=0 

This product has an unaliased wavenumber span of 2N — 1, nearly twice the span 

of cj and bj. The length N DFT of c,- is 

N-l N-l 

4 = E E «nW((n + m-k) mod N). (C.8) 
n=0 ro=0 

Hence modes with (n + m) > N are aliased to modes with k = (n + m) — N. 
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The standard numerical DFT algorithms in use today have a span N which is 

even (typically a power of 2 with optionally one or more factors of 3) and span a 

wavenumber space of (1 - f) < k < f. Products of such series span a wavenumber 

range of (2 - N) < k < N.   Figure C.l illustrates aliasing with such a modal 

arrangement. 

Multiplication 

l-N/2 

n+m-N ...    n   » n+m 

Figure C.l: Example of aliasing 

In order to properly handle products of length N series, length N alias free 

products must be formed. The alias error from such products can be eliminated in 

one of two ways, by truncation and by phase shifting. These methods are outlined 

below. 

C.2    Dealiasing using Truncation 

Since the product of two series each with a wavenumber span of N results in a 

series with a wavenumber span of (2N - 1) a simple method of obtaining a alias 

free product is to use transforms of length 2iV. The length N transforms aj and bj 

are padded with zeros to form length 2N transforms and transformed to physical 

space to form length 2N series. The series are used to form the needed products and 

transformed back to wave space with a length 2iV transform. An alias free length 

N transform can then be extracted by discarding modes beyond the desired span in 

wavespace. 

For the case of a wavenumber space (1 - f) < k < f identical results can be 

obtained using transforms of length §JV rather than 2N, with resulting savings of 
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time and storage space. This can been understood by considering that the worst 

cases for aliasing are when two modes of wavenumber y are combined, giving a 

product which is aliased to (N - §iV) = -y and when two modes of wavenumber 

(1 — y) are combined, giving a product which is aliased to (§iV - N — 2) = (y — 2), 

both of which are outside of the desired alias free wavenumber space of (1 - y) < 

In practice, the maximum transform length N is determined by the limitations 

imposed by the available computer hardware, so the alias free wavenumber space 

carried is in practice 1 - j < k < y. Since two thirds of the available trans- 

form length N can be made alias free using truncation, this method of dealiasing is 

commonly referred to as the 2/3 rule. 

C.3    Dealiasing using Phase Shifts 

Equation C.8 can be rewritten in the form 

n+m=j n+m=j±N 
 v '     ' v ' 

alias free alias error 

If the transforms are performed on a shifted mesh (which manifests in wavespace as 

a multiplication of each Fourier mode a,j by a phase factor e,J'A) and then shifted 

back to the original mesh the results are 

Cj   =   e~ijA J2   aneinAbmeimA +      £      aneinAbmeimA\ 
i+m=j n+m=j±N / 

=      £   anbm + e±iNA     £     anbm. (CIO) 
n+m=j n+m=j±N 
' v '      ■ * ' 

alias free alias error 
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The unaliased part of the product is unaffected by the phase shift while the 

alias error part is multiplied by a phase factor e±iNA. This can be used to exactly 

eliminate the aliasing error by evaluating Cj on two meshes shifted by half a cell 

width from each other. Then 

e±iNA2 _ e±iN(A1±f) _ _e±,7VA! (C11) 

and the alias free product is simply the average of the two evaluations of Cj. 

If exact dealiasing is not essential, as is the case for most time accurate sim- 

ulations, multiple evaluations at each time substep can be avoided by evaluating 

the bi-linear products on a shifted grid at at each time substep. By choosing a 

random phase shift e
±iNA at every other time substep, and using the half-cell offset 

shift e±iAr(A±^0 for the subsequent time substep aliasing error is eliminated to the 

same order as the time advance algorithm. This random shift method is used in the 

present code to control one-dimensional aliasing errors. 

C.4    Multidimensional Dealiasing 

Multi-dimensional Fourier transforms are obtained by applying separate one dimen- 

sional transforms in each direction 

i M-lN-lQ-l 

Qmnq. MNQ— .tg fof^o EEE-^'W(H+W      (c-12) 

The transform in each direction is independent of the other directions, hence aliasing 

in each direction may be treated independently. 

For the three-dimensional DFT, each pair of modes in a bi-linear product can 

combine to form one of four types of terms: an unaliased term, a term aliased in 

one direction, a term aliased in two of the three directions, or a term aliased in all 
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three directions. Hence 

Ck=tj,k,l\ ~ Z_^    am={m,n,q}Vn={r,s,t} 

k 

alias free 

rh+-H= rh+n= Tn+fl= 
£+{±M,0,0} M-{0,±W,0} M-{0,0,±Q} 

aliased in one direction only 

rfi+n— TÄ+n= rft-t-n= 
fc+{±M,±N,0} £±{±M,0,±Q} k±{0,±N,±Q} 

• „ ' 
aliased in two of three directions 

+ £     6*6* (C13) 
A+n= 

k±{±M,±N,±Q} 

aliased in all three directions 

Dealiasing in multiple dimensions can be accomplished in the same ways as in 

one dimension, with truncation, shifting, or a combination of the two. Using only 

truncation is inconvenient since it reduces the number of useful modes to less than 

one third of the available modes. Dealiasing by pure phase shifting is also inconve- 

nient since it would require two evaluations for each direction dealiased, for a total 

of six evaluations per time substep. 

The present code uses a combination of the two methods. Following Patterson 

and Orszag [31], modes with 

are truncated. This eliminates the two and three dimensional aliasing as per the 2/3 

rule, leaving only the one dimensional aliasing. Truncating in this way increased 

the useful modes to approximately half of the total modes. Rogallo [34] advocates 

the somewhat less severe rule of truncating only those modes which are aliased in 
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more than one direction (as opposed to the ellipsoid in C.14 which also truncates 

some modes which are aliased in only one direction) however the increased number 

of useful nodes (to approximately two thirds of the total number of nodes) is not 

significant when the resulting shape of the useful wavespace is considered. 

The remaining one dimensional aliasing errors can be handled using phase 

shifting as described above for the one dimensional case. The transform is evaluated 

twice on grids shifted by half a cell width in each direction, and the alias free 

product is the average of the two evaluations. 

Since exact dealiasing is not required for the present code, random phase shifting 

in each direction at alternate time substeps as outlined above for the one dimensional 

case is used to cancel out the aliasing error to the order of the time advance algorithm. 

The remaining aliasing error appears as a small amplitude random forcing function 

at low wavenumbers [34]. So long as the computed flow remains well resolved (hence 

the energy in the highest wavenumber motions is several orders of magnitude below 

the most energetic wavenumbers) any residual aliasing error will be at least several 

orders of magnitude below the energy of the alias free solution. 
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Appendix D 

TOPOLOGICAL CLASSIFICATION 

Topological methods are useful in the description of vector fields and are coming 

increasingly into use as a means to study the large data sets produced by numerical 

simulations. Chong, Perry, and Cantwell [12] have carried out a general classifi- 

cation of the various types of linearized three-dimensional flows which can occur 

in compressible and incompressible flow. This classification method was used by 

Cantwell, Chen, and Lewis [7] and Chen, Cantwell and Mansour [9] to analyze the 

the topology of flow structures in experimental measurements of a pulsed low-speed 

diffusion flame and direct numerical simulations of a compressible plane wake. Chen 

et al. [11] and Soria et al. [42] used this method to study the small scale motions in 

numerical simulations of a variety of compressible and incompressible flows including 

wakes, mixing layers, isotropic turbulence, and homogeneous shear flows. 

The method is based on concisely summarizing local flow structures in the space 

of invariants of the velocity gradient tensor. In these studies, the velocity gradient 

tensor, Aij = t<;j is calculated at each point in the flow, and the invariants of the 

velocity gradient tensor, as well as the invariants of the rate-of-strain and rate- 

of-rotation tensors are calculated. Plots of the joint probability density functions 

(pdf's) of the invariants for the entire flow reveal global trends in the geometry of 

the velocity field which would be difficult if not impossible to discover using other 

techniques. They also allow the study of how structures in invariant space (which 
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correspond to specific local flow geometries) correspond to structures observed in 

physical space. 

There are several good reasons for studying the velocity gradient tensor as 

opposed to the raw velocity field. Primary among them is that results are coor- 

dinate independent (invariant under any affine transformation) and independent of 

the frame of reference of the observer. Moreover, in the case of incompressible flow 

where the first invariant is zero, the three dimensional physical field, which can be 

infinite in extent, can be represented in a finite region of the two dimensional space 

of the second and third invariants. Finally, large scale motions are associated with 

relatively low gradients while small scale motions are associated with high gradi- 

ents. Thus different length scales in the physical flow naturally tend to be sorted 

into different regions in invariant space, and thus may be examined separately. 

While the present study focuses on the velocity field, it should be noted that 

this method may also be applied to any smooth vector field of interest. These can 

include the vorticity field, the scalar gradient field, or the pressure gradient field. 

D.l    Local Flow Trajectories 

The instantaneous trajectory of any fluid particle in a flow field is determined by 

the solution of the convection equation 

xj,t — uj (D.I; 

where Xj is the location of the given fluid particle and Uj is the flow velocity evaluated 

at the particle position. 

For fluid in the neighborhood of some reference fluid particle at location xc- 

moving with the local flow velocity u^, equation D.l may be used to obtain an 
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equation for the local relative flow. 

C C 
xiJ ~~ xj,t    —    ui ~ uj 

=    (xk - xc
k)uj,k + {xk ~ xc

k)(xi - x1)ujM + ... 

«   ujtk(xk-xc
k). (D.2) 

Hence, in a frame of reference moving with some particle in the flow, x'j = XJ—X
C

J, the 

trajectories of fluid particles near the reference particle with respect to the reference 

particle are determined by the solutions to the linear equation 

x'j,t = Uj,kx'k. (D.3) 

The flow in this local frame of reference is completely determined by the eigen- 

vectors of the velocity gradient tensor 

Ajk = ujtk (D.4) 

the symmetric part of which 

Sjk = ~(uj,k + uk,j) (D.5) 

is the rate-of-strain tensor, and the anti-symmetric part of which 

W3k = gfe _ u^,j) (D-6) 

is the rate-of-rotation tensor. If Ajk has only real eigenvalues, the local flow is strain 

dominated and the local flow consists of fluid moving inward to or outward from the 

origin along distinct axes.. If Ajk has a pair of complex eigenvalues, the local flow 
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is rotation dominated and the local flow consists of fluid spiraling around the origin 

in one plane and flowing inward or outward along the third direction. 

D.2    Eigenvalues 

The eigenvalues, A, and complex eigenvectors, e,, of Ajk satisfy the eigenvalue equa- 

tion 

[Ajk-\6jk]ej = 0 (D.7) 

where the eigenvalues A are solutions to the characteristic equation 

det[Ajk - X8jk] = 0. (D.8) 

Equation D.8 expands to the third order algebraic equation 

\3 + P\2 + Q\ + R = 0 (D.9) 

where P, Q, and R are referred to as the invariants of the tensor Ajk and are given 

by 

P   = -Akk = -Skk (D.10) 

Q   = \(P2-AjkAkj) 

= l-(P2 - SjkSkj - WjkWkj) (D.ll) 

R   = -det[Aifc] 

1 
3/ =   -(-F' + SPQ-AjkAkiAi, 

=   h-P + SPQ-SjkSuSij-SWjkWuStj). (D.12) 
o 
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The set of solutions for A from equation D.9 fall into one of three categories: All 

three A are real and distinct; All three A are real and at least two of them equal; Or 

one A is real and the other two are complex conjugates. The category which a given 

set of A falls into is completely determined by the location of the three invariants in 

(P,Q,R) space. 

The surface in (P,Q,R) space that separates characteristic equations with all 

real solutions from those with one real and two complex solutions (and hence the 

surface on which the characteristic equation has three real solution with at least two 

equal) is given by 

27R2 + (4P3 - 18PQ)R + (4Q3 - P2Q2) = 0 (D.13) 

A detailed discussion of the properties of this surface and a guide to the solutions 

for the resulting sets of tj (and hence the local flow geometry) that can occur in the 

various domains in (P,Q,R) space is given in Chong, Perry, and Cantwell [12]. 

D.3    Incompressible Flows 

For incompressible flows, 

P = Ajj = 0 (D.14) 

and equations D.ll and D.12 simplify to 

Q   =   -\(SjkSkj + WjkWkj) (D.15) 

R   =   -^{SjkSkiSij + ZWjkWkiSij). (D.16) 
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The surface which divides real from imaginary solutions described by equation D.13 

simplifies to the curve 

27R2 + 4Q3 = 0. (D.17) 

Hence, for incompressible flows, the local flow geometry is completely determined 

by the location of the Q and R invariants in (Q, R) space. 

Figure D.l shows all of the possible local flow geometries for incompressible flow. 

Below the curve given by equation D.17 all three eigenvalues of Ajk are real, and the 

flow is dominated by strain type motions. To the left of the R = 0 axis, the local flow 

has fluid moving inwards toward the origin along two of the principal directions and 

outward from it along the third principal direction (stable node/saddle/saddle). To 

the right of the R = 0 axis, the local flow has fluid moving outward from reference 

point along two of the principal directions and inward towards the reference point 

along the third direction (unstable node/saddle/saddle). 

Above the curve given by equation D.17 two of the eigenvalues of Aij are complex, 

and the local flow is dominated by rotational motions. To the left of the R = 0 axis, 

the local flow has fluid spiraling inwards toward the reference point in a plane and 

moving outward from it in the third direction (stable focus/stretching). To the right 

of the R = 0 axis, the local flow has fluid moving toward reference point in one 

direction and spiraling outward in a plane (unstable focus/contracting). 

D.4   Joint Pdf's of Invariants 

This relatively simple mapping of the location of the Q and R invariants in (Q, R) 

space to the local flow geometry allows for a very concise summary of local geometry 

of a large numbers of points in a flow field. Q and R are calculated for each point 

of interest (often the whole flow) and the resulting data is presented as a joint 

probability density function (pdf) in the invariant plane. This allows the local flow 
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Figure D.l: Invariant Space for Incompressible Flows 
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geometries to be studied in a global framework which allows overall trends to be 

easily distinguished. This technique is especially useful for studying the smallest 

scales in the flow, since small scales will have high gradients and their invariants 

will tend to lie far from the origin in {Q,R) space where any trends can easily be 

distinguished. 

D.5    Enstrophy Density, Dissipation, 

and Vortex Stretching 

Other quantities related to the Q and R invariants are also of interest. In partic- 

ular, Q and R maybe be split into contributions from the rate-of-strain and rate-of- 

rotation tensors. These contributions can be directly related to physical quantities 

in the flow. 

The second invariant of the velocity gradient tensor can be rewritten as the 

difference of two pos-i-tive-def-inite quantities 

Q = -\(sjksjk-wjkwjk) 

=   Qs + Qw (D.18) 

where Qs is the second invariant of the rate-of-strain tensor Sjk and Qw is the second 

invariant of the rate-of-rotation tensor Wjk. This decomposition allows the the study 

of the relative importance of strain and rotation (enstrophy density) in the local flow 

geometry. If Q is large and positive, then the local enstrophy density is large and 

dominates the strain (Qw > Qa). If Q is large and negative, then the local strain 

is large and dominates the enstrophy density (Qs > Qw). Plots of joint pdf of Qs 

versus Qw will reveal correlations between strain and rotation in the flow. 
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The third invariant, R can be similarly split 

R   =   -^{SjkSuSu + ZWjkWkiSij) 

=   Rs-a (D.19) 

where Rs is the third invariant of the rate-of-strain tensor Sjk and a = WjkWkiSij 

represents stretching of vorticity. Plots of the joint pdf of a = Rs - R and the other 

invariants will reveal correlations between vortex stretching and other quantities. 

Of particular interest is the correlation between vortex stretching and the enstrophy 

density (2QW). 

The invariants of the rate-of-strain tensor Sjk are of additional interest. For 

incompressible flow, the rate mechanical dissipation of energy due to viscosity is 

related to the second invariant of Sjk by 

<p = 2vSjkSkj = -4vQ9. (D.20) 

Hence strongly dissipating regions in a flow have large negative values of Qs. Since 

Sjk is symmetric, all its eigenvalues must be real, hence its invariants lie under the 

real-imaginary dividing curve given by equation D.17. By studying plots of Qs versus 

Rs correlations between the mechanical dissipation and the local flow geometry can 

be examined. 
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Appendix E 

INVARIANT SPACE PDF'S FOR SELECTED DATASETS 
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Appendix F 

TURBULENCE STATISTICS FOR SELECTED DATASETS 
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Appendix G 

WAKES WITH AN OBLIQUE FUNDAMENTAL 

As discussed in the introduction, Williamson [52] and Williamson & Prasad [53, 54, 

55] suggested an alternate to the mechanism examined in the bulk of this study 

for the development of strong three-dimensional motions in the plane wake. Their 

experiments indicated that strong, highly oblique coherent structures could be pro- 

duced by an interaction between fundamental wavelength disturbances shed at a 

small oblique angle from the wake generator (as is common for the wakes behind 

bluff bodies such as cylinders) and long wavelength two-dimensional waves which 

grow due to the hydrodynamic instability of the far wake. 

In order to verify that this proposed mechanism is indeed a legitimate path for 

the development of three-dimensional structures, a small set of simulations were run 

to examine the behavior of such wakes. The simulations were initiated with the 

same initial mean profile as used in the earlier simulations (see Section 2.7 on page 

40). Fundamental disturbances at angles of between 5° and 30° with respect to 

the spanwise direction (0° being the nonoblique two-dimensional fundamental used 

in the earlier simulations) and two-dimensional (0°) subharmonic disturbances were 

superimposed on the mean. In each case, the width of the computational domain was 

chosen such that the fundamental disturbance was periodic in both the streamwise 

and spanwise directions. Note that because the fundamental disturbance is oblique, 

there is no relevant measure of phase between the fundamental and the subharmonic. 
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The phase, as defined for the two-dimensional wakes in chapter 3, effectively varies 

from 0 to 27T along the span of the simulations. 

Figures G.l, G.2, and G.3 show oblique views of an iso-enstrophy density contour 

for wakes initiated with the oblique fundamental at 5°, 15°, and 30° respectively. 

The Reynolds number of these wakes, Reb — 180, was chosen to approximately 

match the experiments of Williamson et al. The times (all approximately t ~ 100) 

match the times for the wakes in Figure 4.13 in Section 4.3.2 on Page 115. The 

viewing angle is also the same as for the earlier simulations. 

The interaction of the oblique fundamental and the two-dimensional subharmonic 

causes the rollers of the (oblique) Karrnan vortex street which initially forms from 

the oblique fundamental disturbance to wrap around one another. This reorients 

some of the spanwise vorticity from the Karrnan vortex street into the streamwise 

direction. At low angles this wrapping is a result of the essentially two-dimensional 

interaction of the fundamental and the subharmonic. Each spanwise location sees a 

different phase between the fundamental and the subharmonic, thus each spanwise 

Section pairs in a slightly different way as per the discussion in section 3.3.2. This is 

illustrated by the cuts through the vorticity field of the 5° wake which are shown in 

Figure G.4. Eventually the rollers become sufficiently entwined for the three-dimen- 

sionality of the flow to become significant. At higher angles, the same basic process 

occurs, but the three-dimensionality of the flow begins to effect the dynamics at an 

earlier time. 

As Williamson et al. suggest, this mechanism is a likely candidate for the cell 

pattern seen in the far of the plane wake by Cimbala, Nagib, &; Roshko [13]. Figure 

G.5 is a top view of the 30° oblique wake in Figure G.3 (the free stream flow is from 

left to right). The cell pattern here roughly matches the pattern seen in Figure 19 

of Cimbala et al. 
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Figure G.l: Iso-enstrophy density contour for 5° oblique fundamental plus two-dim- 
ensional subharmonic. Re^ = 180. Iwl = 0.2. t = 106.6. 
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Figure G.2:  Iso-enstrophy density contour for 15° oblique fundamental plus two- 
dimensional subharmonic. Re^ = 180. |co>| = 0.2. t = 95.2. 
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Figure G.3:  Iso-enstrophy density contour for 30° oblique fundamental plus two- 
dimensional subharmonic. Re^ = 180. |o;| = 0.2. t = 110.5. 

The higher the angle of the oblique fundamental, the more quickly the rollers 

of the Karmän vortex street become distorted, and the more quickly streamwise 

vorticity is produced. Only at the highest angle shown, 30°, does the wake begin to 

develop streamwise structures similar in intensity to the wakes initiated with pairs 

of oblique subharmonic waves at the same development time (compare the wake in 

Figures G.l, G.2, and G.3 to the the Re^ = 119 wake in Figure 4.13a in Section 

4.3.2 on Page 115). 

This result is consistent with the stability analysis of Flemming [16], which pre- 

dicts strong growth of subharmonic disturbances at angles between approximately 

45° and 70°. The 5° oblique fundamental case produces oblique subharmonic distur- 

bances at angles well below 45°, and thus the three-dimensional structures do not 

grow in strength. At an oblique shedding angle of 30° however, the resulting oblique 

subharmonic disturbances are over 45° (see Figure G.5) and thus grow in strength. 
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Figure G.4: Spanwise vorticity at various spanwise locations for 5° oblique funda- 
mental plus two-dimensional subharmonic. Reb = 180. t - 106.6. Contours are 
0.01 < \u33\ < 0.4 in increments of 0.05. 
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Figure G.5: Top view of iso-enstrophy density contour for 30° oblique fundamental 
plus two-dimensional subharmonic. Reb — 180. \u>\ = 0.2. t = 110.5. 
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Figure G.6: Iso-enstrophy density contour for 5° oblique fundamental plus two-dim- 
ensional subharmonic. Reb = 1800. |w| = 0.2. t = 99.9. 
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1 

Figure G.7:  Iso-enstrophy density contour for 30° oblique fundamental plus two- 
dimensional subharmonic. Ref, = 1800. |w| = 0.8. t = 101.9. 

t 
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This is very significant to the development of fine scale motions at higher 

Reynolds numbers. Figures G.6 and G.7 show iso-enstrophy density contours for 

the 5° and 30° oblique fundamental wakes, respectively, but this time at a Reynolds 

number of Reb = 1800. This gives a Reynolds number and development time 

roughly equivalent to the wake in Figure 4.13d in Section 4.3.2 on Page 117. At the 

time shown, the 5° wake, which does not produce significant streamwise structures, 

has developed no detectable fine scale motions even at this rather high Reynolds 

number. The only effect of increasing the Reynolds number has been to slow the dif- 

fusion of the vorticity in the spanwise rollers. In contrast, the 30° wake, which does 

produce strong coherent streamwise structures, develops strong fine scale motions. 

This is in line with the earlier simulations, and reinforces the result that the tertiary 

transition in the incompressible plane wake requires the presence of strong long 

wavelength coherent streamwise structures. These results indicate that the source 

and symmetry of those structures are not significant, so long as they are present. 
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Appendix H 

SUMMARY OF SIMULATIONS 

Table H.l: Summary of Two-dimensional Simulations 

{ 

Tag 

Filename 

Reb 

Max Time 

JVjX N2x N3 

£ioo 
Soio 

0010 

£ooi 

0001 

£100 

0100 

£010 

0010 

£001 

0001 

m50(0)^ 

mixdifF 

501 

1102.9 

8 x 128 x 4 

- - - - - - 

35(0)*^ 

wkdifF 

35 

283.4 

8 x 128 x 4 

- - - - - - 

346(0)*- 

wk2d_l 

346 

285.8 

128 x 128 x 4 

0.02 - - - - - 

69(0)5** 

wk2d_2 

69 

504.2 

128 x 128 x 4 

0.02 - - - - - 

119(0)*** 

wk2d_3 

119 

361.0 

128 x 128 x 4 

0.02 - - - - - 
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Table H.l:     Summary of Two-dimensional Simulations 

(Cont.) 

Tag 

Filename 

Reb 

Max Time 

NjxN2x N3 

£ioo 
£oio 

</>010 

£OOI 

</>001 

£100 £010 

<f>ow 

£001 

692(0)5- 

wk2d_4 

692 

337.8 

128 x 192 x 4 

0.02 - - - - - 

1384(0)^ 

wk2d_5 

1384 

303.9 

192 x 256 x 4 

0.02 - - - - - 

2768(0)^ 

wk2d_6 

2768 

291.0 

192 x 256 x 4 

0.02 - - - - - 

346(0)££ 

wk2d_7 

346 

311.4 

192 x 192 x 4 

0.02 
0.02 

0 
- - - - 

346(0» 
4 

wk2d_8 

346 

251.5 

192 x 192 x 4 

0.02 
0.02 

TT/4 

- - - - 

346(0)5?, 

wk2d_9 

346 

312.4 

192 x 192 x 4 

0.02 
0.02 

TT/2 

- - - 
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Table H.l:     Summary of Two-dimensional Simulations 

(Cont.) 

r 
Rtb 

Tag 
Max Time £ioo 

£oio £OOI 
£100 £010 £001 

Filename 
Ntx N2x N3 

</>010 <f>ooi <f>wo 
/10 ^°01 

119 
119(0)g£ 0.02 

297.9 0.02 — — — — 

wk2d_10 
128 x 128 x 4 

0 

692 
692(0)££ 0.02 

265.7 0.02 — — — — 

wk2d_ll 
192 x 192 x 4 

0 

1384 
1384(0)^ 0.02 

254.6 0.02 — — — — 

wk2d_12 
192 x 192 x 4 

0 

119 
119(0)Sfr 0.02 

315.1 0.02 — — — — 

wk2d_13 
128 x 128 x 4 

TT/4 

692 
692(0)g|- 0.02 

4 298.1 0.02 — — — — 

wk2d_14 
192 x 192 x 4 

TT/4 

1384 
1384(0)Sf, 0.02 

4 305.1 0.02 — — — _ 

wk2d_15 
192 x 192 x 4 

TT/4 

I 
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Table H.l:     Summary of Two-dimensional Simulations 

(Cont.) 

Tag 

Filename 

Reb 

Max Time 

iVjxJVjX N3 

£ioo 
£oio £ooi 

</>ooi 

£100 

<f>wo 

£010 

<£010 

£001 

119(0)Sf, 

wk2d_16 

119 

340.8 

128 x 128 x 4 

0.02 
0.02 

7T/2 
- - - - 

692(0)gf* 

wk2d_17 

692 

313.5 

192 x 192 x 4 

0.02 
0.02 

TT/2 

- - - - 

1384(0)gf* 

wk2d_18 

1384 

313.7 

192 x 192 x 4 

0.02 
0.02 

TT/2 

- - - - 

346(0)^ 

wk2d_25 

346 

248.1 

256 x 192 x 4 

0.02 
0.02 

0 

0.02 

0 
- - - 

69(0)SSJ 

wk2d_27 

69 

336.1 

128 x 128 x 4 

0.02 
0.02 

0 

0.02 

0 
- - - 
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1 Table H.2: Summary of Three-dimensional Simulations 

( 

Tag 

Filename 

Reb 

Max Time 

JVi x N2 x N3 

£ioo 
£oio 

<f>oio 

£ooi £100 £010 £001 

346(60)°- 

wk3d_l 

346 

340.0 

192 x 128 x 64 

0.02 - - 
0.02 

0 
- - 

346(60)^7 

wk3d_2 

346 

303.0 

128 x 128 x 64 

0.02 - - 
0.02 

TT/4 

- - 

346(60)1;; 

wk3d_3 

346 

218.2 

96 x 128 x 64 

0.02 - - 
0.02 

TT/2 

- - 

346(60)g°* 

wk3d_4 

346 

478.1 

192 x 128 x 64 

0.02 - - - 
0.02 

0 
- 

346(60)ol; 

wk3d_5 

346 

292.1 

192 x 192 x 64 

0.02 - - - 
0.02 

TT/4 

- 

346(60)ol; 

wk3d_6 

346 

293.7 

192 x 192 x 64 

0.02 - - - 
0.02 

TT/2 

- 

346(60)^ 

wk3d_7 

346 

318.4 

192 x 192 x 64 

0.02 
0.02 

0 
- 

0.02 

0 
- - 
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Table H.2:  Summary of Three-dimensional Simulations 

(Cont.) 

Tag 

Filename 

Reb 

Max Time 

JVa x iV2 x N3 

£ioo 
£oio 

<^010 

£ooi 

^001 <f>wo 

£010 £001 

346(60)8|* 
4 

wk3d_8 

346 

321.0 

192 x 192 x 64 

0.02 
0.02 

TT/4 

- 
0.02 

0 
- - 

346(60)°^ 

wk3d_9 

346 

232.0 

96 x 128 x 48 

0.02 
0.02 

TT/2 

- 
0.02 

0 
- - 

346(60)ot
r 

wk3d_10 

346 

200.3 

96 x 128 x 48 

0.02 
0.02 

0 
- 

0.02 

TT/4 

- - 

346(60)o*£ 
4 

wk3d_ll 

346 

321.6 

96 x 128 x 48 

0.02 
0.02 

?r/4 
- 

0.02 

TT/4 

- - 

346(60)o*£ 

wk3d_12 

346 

417.0 

96 x 128 x 48 

0.02 
0.02 

TT/2 

- 
0.02 

TT/4: 

- - 

346(60)17 

wk3d_13 

346 

249.8 

96 x 128 x 48 

0.02 
0.02 

0 
- 

0.02 

TT/2 

- - 
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Table H.2:  Summary of Three-dimensional Simulations 

(Cont.) 

T 

Tag 

Filename 

Reb 

Max Time 

Ni x N2 x N3 

£ioo 
£oio 

<f>010 

£ooi 

<t>001 

£100 

<t>100 

£010 

<f>ow 

£001 

/01 

346(60)|T 
4 

wk3d_14 

346 

272.3 

96 x 128 x 48 

0.02 
0.02 

TT/4 

- 
0.02 

TT/2 

- - 

346(60)|£ 

wk3d_15 

346 

340.8 

96 x 128 x 48 

0.02 
0.02 

TT/2 

- 
0.02 

TT/2 

- - 

346(60)$* 

wk3d_16 

346 

321.1 

128 x 128 x 64 

0.02 
0.02 

0 
- - 

0.02 

0 
- 

346(60)g|- 

wk3d_17 

346 

282.4 

128 x 128 x 64 

0.02 
0.02 

TT/4 

- - 
0.02 

0 
- 

346(60)§|* 

wk3d_18 

346 

293.6 

128 x 128 x 64 

0.02 
0.02 

TT/2 

- - 
0.02 

0 
- 

346(60)ä* 

wk3d_19 

346 

268.7 

96 x 128 x 48 

0.02 
0.02 

0 
- 

0.02 

TT/4 

- - 

c 
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Table H.2:  Summary of Three-dimensional Simulations 

(Cont.) 

Tag 

Filename 

Ret 

Max Time 

JVi x JV2 x N3 

£ioo 
£oio 

<^010 

£ooi 

</*001 

£100 

<t>100 

£010 £001 

346(60)± 
4 

wk3d_20 

346 

329.2 

96 x 128 x 48 

0.02 
0.02 

TT/4 

- - 
0.02 

TT/4 

- 

346(60)o|: 

wk3d_21 

346 

302.9 

96 x 128 x 48 

0.02 
0.02 

TT/2 

- - 
0.02 

vr/4 
- 

346(60)ä* 

wk3d_22 

346 

288.2 

96 x 128 x 48 

0.02 
0.02 

0 
- - 

0.02 

TT/2 

- 

346(60);!; 
4 

wk3d_23 

346 

317.4 

96 x 128 x 48 

0.02 
0.02 

TT/4 

- - 
0.02 

TT/2 

- 

346(60)of: 

wk3d_24 

346 

210.5 

96 x 128 x 48 

0.02 
0.02 

TT/2 

- - 
0.02 

TT/2 

- 

346(60)go°o° 

wk3d_25 

346 

200.1 

256 x 192 x 64 

0.02 
0.02 

0 

0.02 

0 
- 

0.02 

0 

0.02 

0 

297 
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Table H.2:  Summary of Three-dimensional Simulations 

(Cont.) 

Tag 

Filename 

Reb 

Max Time 

Ntx N2x N3 

£ioo 
£oio 

^010 

£ooi 

</>001 

£100 

c£100 

£010 

<£°10 

£001 

<£°01 

2768(60)*!* 

wk3d_26 

2768 

328.7 

256 x 256 x 192 

0.02 - - - 
0.02 

0 

- 

69(60)5°* 

wk3d_27 

69 

336.1 

128 x 128 x 32 

0.02 - - - 
0.02 

0 

- 

1384(60)5°* 

wk3d_28 

1384 

342.4 

192 x 256 x 128 

0.02 - - - 
0.02 

0 

- 

1384(60)°** 

wk3d_29 

1384 

100.2 

192 x 256 x 128 

0.02 - - 
0.02 

0 

- - 

119(60)5°* 

wk3d_30 

119 

425.6 

96 x 128 x 48 

0.02 - - - 
0.02 

0 

- 

H9(60)ol; 

wk3d_31 

119 

459.0 

96 x 128 x 48 

0.02 - - - 
0.02 

TT/4 

- 

(. 
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Table H.2:  Summary of Three-dimensional Simulations 

(Cont.) 

Tag 

Filename 

Reb 

Max Time 

iVx x N2x N3 

£ioo 
£oio 

<f>010 

£ooi 

</>001 

£100 

cf>100 

£010 £001 

H9(60)ol; 

wk3d_32 

119 

478.6 

96 x 128 x 48 

0.02 - - - 
0.02 

TT/2 

- 

119(60)°- 

wk3d_33 

119 

402.7 

96 x 128 x 48 

0.02 - - 
0.02 

0 
- - 

H9(60)s88 

wk3d_34 

119 

352.6 

192 x 128 x 64 

0.02 
0.02 

0 

0.02 

0 
- 

0.02 

0 

0.02 

0 

2768(60)olf 

wk3d_40 

2768 

319.8 

192 x 256 x 128 

0.02 - - - 
0.02 

TT/2 

- 

692(60)^ 

wk3d_41 

692 

222.2 

192 x 192 x 128 

0.02 - - - 
0.02 

0 
- 

692(60)ol; 

wk3d_42 
90.0 

192 x 192 x 128 

0.02 - - - 
0.02 

TT/2 

- 
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